

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

6

.

THERMOPHYSICAL PROPERTIES RESEARCH CENTER ELECTRONIC PROPERTIES INFORMATION CENTER THERMOPHYSICAL AND ELECTRONIC PROPERTIES INFORMATION ANALYSIS CENTER UNDERGROUND EXCAVATION AND ROCK PROPERTIES INFORMATION CENTER

ELECTRICAL RESISTIVITY OF CHROMIUM, COBALT, IRON, AND NICKEL

> By T. K. Chu and C. Y. Ho

> > CINDAS Report 60

June 1982

Prepared for OFFICE OF STANDARD REFERENCE DATA National Bureau of Standards U. S. Department of Commerce Washington, D.C. 20234 This document has been convert for public release and make the detribution is uniform. 83 06 07 094

FOR INFORMATION AND NUMERICAL DATA ANALYSIS A

THE FILE COPY

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
REPORT NUMBER 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
AD-12907	8
	5. TYPE OF REPORT & PERIOD COVERED
FLECTRICAL RESISTIVITY OF CHRONILM COLBALT TRON	
AND NICKEL	State-of-the-Art Report
	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(a)	A CONTRACT OR GRANT NUMBER(a)
T. K. Chu and C. Y. Ho	
· PERFORMING ORGANIZATION NAME AND ADDRESS Thermophysical and Electronic Properties	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Information Analysis Center, CINDAS/Purdue	
Univ., 2595 Yeager Rd., W. Lafayette, IN 47906	
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Defense Technical Information Center, Defense	June 1982
Alexandria. VA 22314	13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	1 154. DECLASSIFICATION/DOWNGRADING
	SCHEDULE N/A
5. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited.	SCHEDULE N/A
6. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fro	SCHEDULE N/A
6. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different in	SCHEDULE N/A
 DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered into the abstract entered in Block 20, 11 different into the abstract entered in Block 20, 11 different into the abstract entered into the abstract en	SCHEDULE N/A
 DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different ind 8. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413) 	SCHEDULE N/A
 6. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different inc. 8. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413) Microfiche Copies available from DTIC 	SCHEDULE N/A
 DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different inc. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413: Microfiche Copies available from DTIC KEY WORDS (Continue on reverse side 11 necessary and identify by block number. 	SCHEDULE N/A
 6. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different inc. 8. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413) Microfiche Copies available from DTIC 9. KEY WORDS (Continue on reverse side 11 necessary and identify by block number, #Electrical Resistivity-a#Chromium-#Cobalt-a#Tre 	SCHEDULE N/A
 6. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different inc. 8. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413: Microfiche Copies available from DTIC 9. KEY WORDS (Continue on reverse side if necessary and identify by block number, *Electrical Resistivity*Chromium*Cobalt*Irc 	SCHEDULE N/A
 6. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different income and incom	SCHEDULE N/A
 6. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different inc. 8. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413: Microfiche Copies available from DTIC 9. KEY WORDS (Continue on reverse side if necessary and identify by block number, *Electrical Resistivity*Chromium*Cobalt*Irc 	SCHEDULE N/A
 DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different inc. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413: Microfiche Copies available from DTIC KEY WORDS (Continue on reverse side if necessary and identify by block number, *Electrical Resistivity*Chromium*Cobalt*Irc ABSTRACT (Continue on reverse side if necessary and identify by block number) 	SCHEDULE N/A Mar Report) 571); 571); 571); 571) 571); 571) 571); 571]; 571]; 571]; 571]; 571]; 571];
 DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different inc. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413: Microfiche copies available from DTIC KEY WORDS (Continue on reverse side if necessary and identify by block number, *Electrical Resistivity*Chromium*Cobalt*Irc ABSTRACT (Continue on reverse side if necessary and identify by block number) and discusses the available data and information 	SCHEDULE N/A MR Report) 571); 571); 571); 571) 571); 571)
 6. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different inc. 8. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413: Microfiche copies available from DTIC 9. KEY WORDS (Continue on reverse side If necessary and identify by block number, *Electrical Resistivity*Chromium*Cobalt*Irc 0. ABSTRACT (Continue on reverse side If necessary and identify by block number) and discusses the available data and information of chromium, cobalt, iron, and nickel and present 	SCHEDULE N/A MR Report) 571); 571)
5. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different inc 8. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413) Microfiche Copies available from DTIC 9. KEY WORDS (Continue on reverse side if necessary and identify by block number, *Electrical Resistivity*Chromium*Cobalt*Irc 9. ABSTRACT (Continue on reverse side if necessary and identify by block number, *Electrical Resistivity*Chromium*Cobalt*Irc 9. ABSTRACT (Continue on reverse side if necessary and identify by block number, and discusses the available data and information of chromium, cobalt, iron, and nickel and present sulting from critical evaluation, correlation, and available data and information.	SCHEDULE N/A Mar Report) 571); 571
 6. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different in 8. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413: Microfiche Copies available from DTIC 7. KEY WORDS (Continue on reverse side 11 necessary and identify by block number, *Electrical Resistivity*Chromium*Cobalt*Irc 7. ABSTRACT (Continue on reverse side 11 necessary and identify by block number, and discusses the available data and information of chromium, cobalt, iron, and nickel and present sulting from critical evaluation, correlation, and and also corrected for the thermal expansion of formation 	SCHEDULE N/A Mr Report) 571); 571); This work compiles, reviews, on the electrical resistivity at the recommended values re- halysis, and synthesis of the values presented are uncorre- the material and cover the
6. DISTRIBUTION STATEMENT (of this Report) Distribution umlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different in 8. SUPPLEMENTARY NOTES CINDAS/TEPIAC Publication; (DTIC Source Code 413: Microfiche copies available from DTIC 9. KEY WORDS (Continue on reverse side 11 necessary and identify by block number, *Electrical Resistivity*Chromium*Cobalt*Irc 9. ABSTRACT (Continue on reverse side 11 necessary and identify by block number, *Electrical Resistivity*Chromium*Cobalt*Irc 9. ABSTRACT (Continue on reverse side 11 necessary and identify by block number, sulting from critical evaluation, correlation, ar available data and information. The recommended and also corrected for the thermal expansion of 1 temperature range from 1 K to above the melting	SCHEDULE N/A Mr Report) 571); 571)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

......

- 41 - Al-

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

.

inic....

,

1.11.11.1

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ELECTRICAL RESISTIVITY OF CHROMIUM, COBALT, IRON, AND NICKEL

> By T. K. Chu and C. Y. Ho

> > CINDAS Report 60 June 1982

Acces	sion For
MTIS	GRALI
DTIC	
Unann	ouncad 🗍
Justi	fication
By	
Distr	ibution/
Avai	lability Codes
	Avail and/or
Dist	Special
•	
	1 1
Λ	1 1

Prepared for

OFFICE OF STANDARD REFERENCE DATA National Bureau of Standards U. S. Department of Commerce Washington, D.C. 20234

CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AND SYNTHESIS Purdue University 2595 Yeager Road West Lafayette, Indiana 47906

All rights reserved. This work or any part thereof may not be reproduced in any form without written permission of the Purdue Research Foundation.

PREFACE

This technical report was prepared by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS), Purdue University, West Lafayette, Indiana, under the auspices of the Office of Standard Reference Data of the National Bureau of Standards (NBS), Department of Commerce, Washington, D.C.

This report represents the most exhaustive compilation and critical evaluation of the recorded world knowledge on the electrical resistivity of chromium, cobalt, iron, and nickel, and is one of a series of technical reports on the electrical resistivity of selected elements. The literature search and data compilation have been done in a most extensive and detailed manner, making it possible for all users of the subject to have access to the original data without having to duplicate the laborious and costly process of literature search and data extraction. Also, for the active researchers in the field, a detailed discussion is presented for each material, reviewing the available data and information, giving details of data analysis and synthesis, and discussing the considerations involved in arriving at the final recommended values.

It is hoped that this work will prove useful not only to the engineers and scientists in the field but also to other engineering research and development programs and for industrial applications, as it provides a wealth of knowledge heretofore unknown or inaccessible to many. In particular, it is thought that the critical evaluation, analysis and synthesis, and reference data generation constitute a unique aspect of this work.

Although this report is primarily the result of financial support and interest of the NBS Office of Standard Reference Data, the extensive documentary activity essential to this work was supported by the Defense Logistics Agency of the Department of Defense. Thanks are due Dr. H. J. White, Jr., of the NBS Office of Standard Reference Data for his guidance, cooperation, and sympathetic understanding during the course of this work.

ABSTRACT

This work compiles, reviews, and discusses the available data and information on the electrical resistivity of chromium, cobalt, iron, and nickel and presents the recommended values resulting from critical evaluation, correlation, analysis, and synthesis of the available data and information. The recommended values presented are uncorrected and also corrected for the thermal expansion of the material and cover the temperature range from 1 K to above the melting point into the molten state. The estimated uncertainties in most of the recommended values are about $\pm 5\%$.

Key words: Chromium; cobalt; conductivity; critical evaluation; data analysis; data compilation; data synthesis; electrical conductivity; electrical resistivity; elements; iron; metals; nickel; recommended values; resistivity.

CONTENTS

	Page	<u>e</u>
	PREFACE	i
	ABSTRACT	v
	LIST OF TABLES	i
	LIST OF FIGURES	í
	NOMENCLATURE	i
1.	INTRODUCTION	1
2.	GENERAL BACKGROUND	3
	2.1. Theoretical Background	3
	2.2. Presentation of Data and Information	6
3.	ELECTRICAL RESISTIVITY DATA AND INFORMATION	9
	3.1. Chromium	9
	3.2. Cobalt	1
	3.3. Iron	1
	3.4. Nickel	7
4.	ACKNOWLEDGMENTS	3
5.	APPENDICES	4
	5.1. Methods for the Measurement of Electrical Resistivity 144	4
	5.2. Conversion Factors for the Units of Electrical Resistivity 14	6
6.	REFERENCES	7

v

LIST OF TABLES

		Page
1.	Recommended Values for the Electrical Resistivity of Chromium	17
2.	Measurement Information on the Electrical Resistivity of Chromium .	20
3.	Experimental Data on the Electrical Resistivity of Chromium	34
4.	Recommended Values for the Electrical Resistivity of Cobalt	57
5.	Measurement Information on the Electrical Resistivity of Cobalt	60
6.	Experimental Data on the Electrical Resistivity of Cobalt	66
7.	Recommended Values for the Electrical Resistivity of Iron	81
8.	Measurement Information on the Electrical Resistivity of Iron	84
9.	Experimental Data on the Electrical Resistivity of Iron	103
10.	Recommended Values for the Electrical Resistivity of Nickel	123
11.	Measurement Information on the Electrical Resistivity of Nickel	126
12.	Experimental Data on the Electrical Resistivity of Nickel	136

vi

LIST OF FIGURES

																						rage
1.	Electrical	Resistivity	of	Chromium	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
2.	Electrical	Resistivity	of	Chromium	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
3.	Electrical	Resistivity	of	Cobalt .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	58
4.	Electrical	Resistivity	of	Cobalt .	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	59
5.	Electrical	Resistivity	of	Iron	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	82
6.	Electrical	Resistivity	of	Iron	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	83
7.	Electrical	Resistivity	of	Nickel .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	124
8.	Electrical	Resistivity	of	Nickel .	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	125

ļ

 vii

NOMLACLATURE

- A Constant in eqs (3b) and (8)
- c Impurity concentration
- C Constant in eq (3a)
- e Base of natural logarithm
- \hbar Planck constant divided by 2π
- k Boltzmann constant
- L Length of specimen at T
- L₀ Length of specimen at T₀
- $\Delta L = L L_0$
- M Atomic weight
- T Temperature
- T₀ Reference temperature
- $x = \hbar \omega / kT$
- α Constant in eqs (7) and (8)
- Δ Deviation from the Matthiessen's rule
- θ_{D} Debye temperature
- $\boldsymbol{\theta}_R$ Characteristic temperature for intrinsic electrical resistivity
- ρ Electrical resistivity
- ρ₀ Residual electrical resistivity
- ρ_e Electrical resistivity due to electron-electron scattering
- ρ_i Intrinsic electrical resistivity
- ω Phonon angular frequency

viii

1. INTRODUCTION

1

The principal objective of this project was to exhaustively compile, critically evaluate, analyze, and synthesize all the available data and information on the electrical resistivity of a large number of selected elements and to generate recommended values over a full range of temperature from 1 K to the melting point and beyond. The results on the electrical resistivity of chromium, cobalt, iron, and nickel are presented in this work, which is one in a series of similar works on the electrical resistivity of selected elements, some published $[1-3]^1$. The comprehensive study of the electrical resistivity of the elements at the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) has been a continuation of a similar extensive work on the thermal conductivity of the elements [4].

The general background information on this work is given in Section 2, which includes a brief introduction to the theory of the electrical resistivity of metals and a detailed explanation of the specifics and conventions used in the presentation of the data and information.

The experimental data and information and the recommended values for the electrical resistivity of the four elements are presented in Section 3. In the discussion of the electrical resistivity of each element, individual pieces of available data and information are reviewed, details of data analysis and synthesis are given, the considerations involved in arriving at the final assessment and recommendation are discussed, the recommended values and the experimental data are compared, and the uncertainties in the recommended values are stated. Recommended values uncorrected and corrected for the thermal expansion of the material are both presented in this section. The values cover the temperature range from 1 K to above the melting point.

The last three sections are for acknowledgments, appendices, and references. There are two appendices given. The first appendix presents a logical organization of the methods for the measurement of electrical resistivity. The methods are are designated with respective code letters and the same code letters are used in the "Method Used" column of the Table of Measurement Information for indicating

¹Numbers in brackets indicate literature references listed in Section 6.

the experimental methods used by the various authors. The second appendix presents conversion factors for the units of electrical resistivity, which may be used to convert easily the electrical resistivity values in the SI units given in this work to values in any of the several other units listed.

2

ļ

2. GENERAL BACKGROUND

2.1. Theoretical Background

It was found experimentally by Matthiessen [5,6] that the increase in the electrical resistivity of a metal due to the presence of a small amount of another metal in solid solution is independent of the temperature. According to this Matthiessen's rule, the total electrical resitivity of an impure metal may therefore be separated into two additive contributions and written in the form

$$\rho(c,T) = \rho_0(c) + \rho_1(T),$$
 (1)

where ρ_0 is the residual resistivity caused by the scattering of electrons by impurity atoms and lattice defects and is temperature-independent but dependent on the impurity concentration, c, and ρ_i is the temperature-dependent intrinsic resistivity arising from the scattering of electrons by lattice waves, or phonons.

In reality, however, deviations from Matthiessen's rule do occur. Thus, in general the electrical resistivity of an impure metal is given by

$$\rho(c,T) = \rho_0(c) + \rho_1(T) + \Delta(c,T),$$
 (2)

where Δ is the deviation from the Matthiessen's rule.

Second of the last of the second s

a magnagette all facto a

The intrinsic electrical resistivity which is due to scattering of electrons by phonons may be approximated by the Bloch-Grüneisen formula [7,8]:

$$\rho_{i} = \frac{C}{M\theta_{R}} \left(\frac{T}{\theta_{R}} \right)^{5} \int_{0}^{\theta_{R}/T} \frac{x^{5}e^{x} dx}{(e^{x} - 1)^{2}}$$
(3a)

$$= A \left[\frac{T}{\theta_R}\right]^5 \int_{0}^{\theta_R/T} \frac{x^5 e^x dx}{(e^x - 1)^2},$$
 (3b)

where C is a constant characteristic of the metal and proportional to the square of the electron-phonon interaction constant, M is the atomic weight, θ_{R} is a characteristic temperature of the metal which characterizes its intrinsic electrical resistivity in the same way as the Debye temperature,

 $\theta_{\rm D}$, characterizes its lattice specific heat, and A \equiv C/M $\theta_{\rm R}$. The dimensionless variable of integration x = $\hbar\omega/kT$, where \hbar is the Planck constant divided by 2π , ω is the phonon angular frequency, and k is the Boltzmann constant. The derivation of eq (3) is based on the simplifying assumptions that the Fermi surface is spherical, that the conduction electrons can be treated as free in the first approximation, that the spectrum of lattice vibrations is that of the Debye model, that the phonon distribution is essentially undisturbed by the scattering processes, and that electron-phonon Umklapp processes can be ignored. Consequently, it is perhaps most reasonable to expect the Bloch-Grüneisen formula to agree with experiment in the case of monovalent metals. Nevertheless, the intrinsic resistivity of many metals can be well represented by eq (3) over a wide temperature range by a suitable choice of $\theta_{\rm R}$ and C, though no single values of $\theta_{\rm p}$ can fits the data at all temperatures.

At low temperatures (T $\leq \theta_R/20$), eq (3a) reduced to

$$\rho_{i} = \frac{124.4C}{M\theta_{R}} \left(\frac{T}{\theta_{R}}\right)^{5}, \qquad (4)$$

while at high temperatures (T > θ_p), to a good approximation, it reduces to

$$\rho_{1} \approx \frac{C}{4M\theta_{R}} \left(\frac{T}{\theta_{R}} \right).$$
 (5)

Thus it agrees with the experimental facts that at very low temperatures the intrinsic electrical resistivity (after subtracting ρ_0 from ρ) of most metallic elements is proportional to T⁵, and at high temperatures the resist_vity of most metals increases approximately linearly with temperature.

In separating the electrical resistivity into its components, the temperature dependent part sometimes includes the electrical resistivity due to electron-electron scattering, ρ_e ; indeed, this is thought to be the dominant temperature-dependent term in transition metals at low temperatures. That is,

$$\rho = \rho_0 + \rho_a + \rho_i(\mathbf{T}) \tag{6}$$

As in the case of the scattering of electrons by phonons, electron-electron collisions are of two types: normal processes in which the total wave vector is conserved, and Umklapp processes in which the total wave vectors before and after the collision differ by a reciprocal lattice vector. On the other hand, unlike electron-phonon Umklapp processes which are frozen out at low temperatures

if the Fermi surface is everywhere clear of the zone boundary, electron-electron Umklapp processes are not frozen out at low temperatures. Normal processes, involving the collision between two s-band conduction electrons, do not contribute directly to the electrical resistivity because they do not change the total momentum and thus have no effect on the current. Normal processes involving the scattering of an s-band conduction electron by a non-conducting d-band electron do contribute to the electrical resistivity, and are thought to be the dominant temperature-dependent resistive processes in transition elements and their alloys at very low temperatures, since their resistivities show the T^2 temperature dependence expected for electron-electron scattering rather than the T^5 temperature dependence expected for the intrinsic resistivity. This temperature dependence of the electrical resistivity due to electronelectron scattering:

$$\rho_{\rm g} = \alpha T^2 \tag{7}$$

comes about through the double application of the exclusion principle in the scattering processes; it applies to both the initial states and final states. In eq (7), α is a constant.

Umklapp processes between two conduction electrons do contribute to the electrical resistivity. Because these processes involve a reciprocal lattice vector, the wave functions of the electrons involved cannot be regarded as simple plane waves, but must be treated as true Bloch functions having the periodicity of the lattice. The results of this are to introduce into the expression for the resistivity the square of an interference factor. Apparently this factor is quite small, as the low temperature electrical resistivity of most ordinary metals does not show the T^2 temperature dependence expected for such a resistive mechanism.

Substituting eqs (7) and (3b) into eq (6) yields

$$\rho = \rho_0 + \alpha T^2 + A \left(\frac{T}{\theta_R}\right)^5 \int_0^{\theta_R/T} \frac{x^5 e^x dx}{(e^x - 1)^2} .$$
 (8)

Equation (8) has been used frequently in analyzing the experimental data and in generating the recommended values for the electrical resistivity of cobalt, iron, and nickel at low temperatures.

2.2. Presentation of Data and Information

In each of the subsections in Section 3, electrical resistivity data and information for each element are presented in the following order:

- (1) A discussion text,
- (2) A table of recommended values,
- (3) A figure presenting recommended values and experimental data as a function of temperature in log-log scale,
- (4) A figure presenting recommended values and experimental data as a function of temperature in linear scale,
- (5) A table giving measurement information on the experimental data presented in the figures, and
- (6) A comparable table tabulating experimental data of all the data sets presented in the figures and/or listed in the tables.

In the discussion text on the electrical resistivity of each alloy system, individual pieces of available data and information are reviewed, details of data analysis and synthesis are given, the considerations involved in arriving at the final assessment and recommendation are discussed, the recommended values and the experimental data are compared, and the uncertainties of the recommended values are stated.

The recommended values are for well-annealed high-purity specimens of the respective elements; however, those values for low temperatures are applicable only to the particular specimens having residual electrical resistivities as given at 1 K in the tables.

Recommended values uncorrected and corrected for the thermal expansion of the element are both given in the table. The uncorrected and corrected values are related by the following equation:

$$\rho_{\text{corrected}}(T) = \left(1 + \frac{\Delta L(T)}{L_0}\right) \rho_{\text{uncorrected}}(T), \qquad (9)$$

where $\Delta L = L - L_0$, and L and L_0 are the lengths of the specimen at any temperature T and at a reference temperature T_0 , respectively. The thermal expansion correction amounts roughly to about -0.2% to -0.7% at very low temperatures, zero at room temperature, about 0.3% to 0.7% at 500 K, and about 2% near the melting point of the element. The recommended values in some cases are given with more significant figures than warranted, which is merely for tabular smoothness or for the convenience of internal comparison. Hence, the number of significant figures given in the table has no bearing on the degree of accuracy or uncertainty in the values; the uncertainty in the values is always explicitly stated.

In the figures, a data set consisting of a single data point is denoted by a number enclosed by a square, and a curve that connects a set of two or more data points is denoted by a ringed number. These data set numbers correspond to those listed in the accompanying tables providing measurement information and tabulating numerical data for each of the data sets. When several sets of data are too close together to be distinguishable, some of the data sets, though listed and tabulated in the tables, are omitted from the figure for the sake of clarity. The data set numbers of those data sets omitted from the figure are asterisked in both tables providing the measurement information and tabulating the experimental data. If only part of the data points of a data set are omitted from the figure, only those data points omitted are asterisked in the table tabulating the experimental data.

The tables providing the measurement information contain for each set of experimental data the following information: data set number, reference number, author(s), year of publication, experimental method used for the measurement, temperature range covered by the data, name and specimen designation, specimen composition, specification and characterization, and information on measurement conditions, which are contained in the original paper. The experimental methods used for the measurement of the electrical resistivity are indicated in the column heated "Method Used" in the table by the following code letters:

- A Direct-current potentiometer method
- B Direct-current bridge method
- C Alternating-current potentiometer method
- D Alternating-current brige method
- G Galvanometer amplifier method
- R Rotating magnetic field method
- V Voltmeter and ammeter direct reading method

This symbol means either that the method described by the author is not sufficient for assigning a specific code letter or that the use of a code letter would not convey enough of the information reported in the research document, and therefore the method used is described briefly in the last column of the table.

Details of these and other methods for the measurement of electrical resistivity may be found in the literature references given in Appendix 5.1, which presents a complete scheme for the classification and organization of the methods.

In the tables tabulating the experimental data, all the original data reported in different units have been converted to have the same units: the SI units $10^{-8} \Omega$ m. The recommended values generated are also given in the same units. Conversion factors for the units of electrical resistivity, which may be used to convert the electrical resistivity values in the SI units given in this work to values in other units, are given in Appendix 5.2.

3. ELECTRICAL RESISTIVITY DATA AND INFORMATION

3.1. Chromium

There are 163 sets of experimental data available for the electrical resistivity of chromium. The information on specimen characterization and measurement condition for each of the data sets is given in table 2. The data are tabulated in table 3 and shown partially in figures 1 and 2.

Chromium undergoes an antiferromagnetic-paramagnetic transition at about 312 K; it is not surprising that more than one third of the data sets deal with the behavior of the electrical resistivity at temperatures in the vicinity of the transition. In general, the purities of the chromium specimens studied are not as high as those of other more common elements, such as iron and nickel. Judging from the impurity analyses reported, a purity of 99.99% appears to be the highest available at the present time. It is therefore not unexpected that the reported residual resistivity ratios are not very high. Indeed, the highest for a polycrystalline specimen is 380 given by Laubitz and Matsumura [9] (data sets 53-61). Their specimen was the same as that of Moore et al. [10] (data sets 50-52), who reported a residual resistance ratio of 280. This specimen was prepared by compacting (apparently small) crystals, and by hot extending. The former authors, in addition, carried out extended annealing periods: four days at 1100 K and one day at 1200 K. The reported purity of this specimen was not particularly high; 99.98⁺% with major impurities of 0.0070% C and 0.0030% Fe. For comparison, the cast specimen of Meaden et al. [11-13] (data sets 69-75), had a reported purity of 99.999% with major impurities of 0.0010% C and 0.0080% 0. However, the residual resistance ratio of this specimen is only 178. After annealing at >1273 K for 75 hours (of which 50 hours is at 1473 K), the residual resistance ratio increases to 295 (data sets 76, 77). It is apparent that, in order to obtain a true indication of the residual resistivity of a chromium specimen, prolonged annealing at temperatures in excess of 1000 K is quite essential. The present recommendation for the electrical resistivity of chromium at low temperatures is only for chromium having a particular residual resistivity, which is based on the residual resistance ratio reported by Laubitz and Matsumura [9] for data set 53.

There are only a few data sets which give the electrical resistivity of chromium from liquid-helium temperature to room temperature in reasonably small temperature intervals: Harper et al. [14] (data set 17), Goff [15,16] (data sets 79,80), and Arajs et al. [17-20] (data sets 94-102). The data of Harper

et al. had been analyzed by White and Woods [21] who found the temperature dependent part of the resistivity proportional to $T^{3,2}$ for temperatures below 100 K. A similar analysis on the data sets 7, 79-80, and 99-100 substantiated the finding of White and Woods; the exponent was found to be 3.23, with an uncertainty of ±0.20. In addition, selected data points from those reported by Chiu et al. [22] (data set 46), and by Moore et al. [10] (data sets 47-50) in the temperature range 80-100 K are also in agreement with this finding. With a coefficient of 5.756 x $10^{-15} \Omega m K^{-3.23}$, the experimental data of ρ - ρ_0 predominantly stay within 0.1 x $10^{-8} \Omega m$ of the calculated values at the higher end of this temperature range, and within 0.002 x $10^{-8} \Omega m$ at lower temperatures (<20 K). (It is interesting to note that the specimen of Arajs et al. [17,18] (data sets 94-99) is for a single crystal specimen with residual resistivity of 1.06 x $10^{-8} \Omega m$.) The electrical resistivity values below 100 K were therefore obtained by the relation

 $\rho(10^{-8} \Omega m) = \rho_0 + 5.756 \times 10^{-7} T^{3.23}$ (10)

At temperatures above 100 K, the rate of increase of the temperature dependent part of the resistivity becomes slower with increasing temperature. The discrepancies between the data sets also become larger with increasing temperature, indicating that the deviation from Mattheissen's Rule becomes important. From studies of the electrical resistivities of chromium alloys (see, e.g., Arajs et al. [20], deVries [23], Cox and Lucke [24], Taylor [25], and Muheim and Müller [26]), it was found that impurities not only affect the values of the resistivity, but also the Néel temperature. Since the electrical resistivities of chromium and dilute chromium alloys generally show a local maximum at temperatures slightly below the Néel temperature, it is not unexpected that the data sets show greater discrepancies as the Néel temperature is approached. Furthermore, depending on the type of impurity, the electrical resistivity of a chromium alloy can be lower than that of the pure chromium at temperatures immediately below the Néel temperature of pure chromium (see, e.g., Taylor [25], Susuki [27] and deVries [23]). The recommended values in the temperature range from 100 K to the Néel temperature are based on the data of Moore et al. [10] (data set 50), and in the vicinity of the Néel temperature they are based on the above data and that of Laubitz and Matsumura [9] (data set 53). As it is mentioned previously, the same specimen was used in both of these two measurements: the latter authors annealed the specimen at a higher temperature for

long periods of time. The difference between the resistivity values of these data sets at ~ 300 K is $\sim 0.4\%$ or $\sim 0.05 \times 10^{-8} \Omega m$. This difference is higher than the difference of $\sim 0.01 \times 10^{-8} \Omega m$ in their residual resistivities (calculated from the reported residual resistance ratios); but is still within the limits given by the reported measurement inaccuracies. The data of Meaden et al. [13, 28] (data sets 76-78) for a specimen with a residual resistance ratio of 295 show slightly weaker temperature dependence: the values being $\sim 10\%$ above and $\sim 2\%$ below those of data set 50 at ~ 100 K and ~ 300 K, respectively.

The behavior of the electrical resistivity of chromium in the vicinity of the Néel temperature has been studied quite extensively: it goes through a broad maximum at approximately 4 K below the Néel temperature and decreases rapidly as the Néel temperature is approached. The temperature derivative of the electrical resistivity then goes through a spike-like minimum. The ensuing minimum in electrical resistivity value occurs at a few tenth of a degree above the Néel temperature. The position of the minimum in the temperature derivative has been associated with the Néel temperature. However it has been proposed recently, from theoretical calculations, that the temperature derivative of the electrical resistivity should follow a power law relation: $(T_N-T)T_N^{-1}$ (see, e.g., Suezaki and Mori [29], Alexander et al. [30]). The recent publication by Rapp et al. [31] showed that the power law was only applicable in the temperature range from $T_{\rm N}$ - 8.5 K to $T_{\rm N}$ - 0.5 K, and the temperature derivative of the measured resistance was at a minimum at about 0.18 degree below T_N determined by a fit to the power law relation. The simulataneous measurements of electrical resistivity and sublattice magnetization by neutron diffraction method on a single crystalline iodide chromium specimen by Ishikawa et al. [32] (data set 158), showed that the minimum in the electrical resistivity occurred at about 0.5 degree above the Néel temperature. They also found that there was some residual ordering above the transition. This residual ordering persisted till \sim 315 K, and was attributed by the authors to the strain introduced in spot welding the specimen. However, this interpretation appears to be in conflict with the observation of Stebler [33] (data sets 112-115), who reported considerable hysteresis across the Néel transition. Stebler attributed the hysteresis to (thermal) strain, but failed to observe appreciable residual ordering (again with neutron diffraction method) in his specimen. It is apparent that the critical phenomenon of antiferromagnetic-paramagnetic transition in chromium is

a complex one and is still subject to further investigations. Experimentally, the accurate determination of the electrical resistivity in the close vicinity of the Néel temperature poses considerable difficulties. This is due to the rapid change in the temperature derivative of the electrical resistivity over a narrow temperature range, while the value of the electrical resistivity itself changes only slightly. Thus, even for the same specimen, Laubitz and Matsumura [9] (data set 53) found that the position of the resistivity minimum was at 311.7 K, but from the data of Moore et al. [34] (data set 63), it appeared that the minimum occurred at around 312.3 K. For comparison, Matsumoto and Mitsui [35] stated that the minimum was at 312.0 K for a specimen with residual resistivity ratio comparable to that of the above (350 instead of 380). For these reasons, it is concluded that a recommendation for the detailed variation of the electrical resistivity of chromium at the close vicinity ($v\pm 0.5$ degree K) is beyond the scope of the present study. The position of the resistivity minimum is tentative taken at 311.7 K following Laubitz and Matsumura [9], as these authors apparently made their measurements at very small temperature intervals. This temperature is within ± 0.2 degree of those determined from the data of Anderson et al. [36] (data set 87), Stebler [33] (data sets 114, 115) and Trego and Mackintosh [37] (data set 116). The Néel temperature of chromium is tentatively taken as 311.5 K, as determined by specific heat measurements.

Even though hysteresis across the Néel transition is not generally mentioned by most authors, it has been reported by some: Mitsui and Tomizuka [38] (data sets 33, 34), and Stebler [33] (data sets 112, 113). If the hysteresis is caused by strain, as suggested by Stebler [33], it should disappear in specimens that have been annealed for a sufficiently long period of time at high temperatures and are heated up and/or cooled down through the transition at a sufficiently slow rate during the measurements.

For chromium, there is another transition occurring at about 120 K: the spin-flip transition. At this temperature, the polarizations of the spin-density waves, which give rise to the antiferromagnetism in chromium, changes from longitudinal (at lower temperatures) to transverse (at higher temperatures). Arajs [39], upon reanalyzing the earlier data of Arajs and Dunmyre [19] (data set 100), concluded that there is a change in the temperature coefficient of the resistivity, which was first reported by Matsumoto et al. [35]. Meaden et al. [12,13] (data sets [1-77] reported a step-type anomaly, in addition to a change of slope.

However, the slope changes reported are quite different: from $T^{2\cdot8}$ to $T^{2\cdot0}$ according to Arajs [39] and from $T^{2\cdot45}$ to $T^{2\cdot25}$ according to Meaden et al. [12,13]. In addition, the step-type anomaly, also reported by Kostina et al. [40] (data sets 134, 138) for single crystalline specimen, is in the opposite direction (a decrease instead of an increase in value) to that reported by Meaden et al. [12,13]. Most other authors did not report any unusual behavior of the electrical resistivity at this temperature, and Moore et al. [10] stated that the spin-flip transition did not have a noticeable effect on the electrical resistivity. Muir and Ström-Olsen [41] also did not detect any change of the temperature coefficient of the measured resistance of their single domain specimen at the spin-flip temperature. In generating the present recommended values, it is assumed that the electrical resistivity is not affected by this transition, and the values and their temperature derivative are continuous through the transition.

At temperatures above the Néel transition, the electrical resistivity of chromium varies smoothly with temperature. Among the available data sets, there are three from independent sources that agree well with one another: Moore et al. [34] (data set 64), Arajs et al. [20] (data set 102), and Cox and Lucke [24] (data set 103). The agreement between data sets 64 and 102 is within 1% from 400 to 1000 K, and between data sets 64 and 103 is within 2.5% from 400 to 1300 K. The recommended values from the Néel temperature to 1300 K are based on these three data sets, with more weight given to that of Moore et al. [34] (data set 64) since the specimen of this data set is the same as that of data sets 50 and 53 upon which the recommended values at lower temperatures are based. It should be noted here that the resistivity values reported by Moore et al. [34] had been corrected for thermal expansion. However, these authors did not report the method by which the correction was applied. Therefore, the comparison mentioned above was carried out after account had been taken of the effect of thermal expansion, using the recommended thermal expansion values of Touloukian et al. [42, p. 61].

There are a number of data sets for temperatures above 1300 K. The agreement between them is not good: the spread among them is about 20 x $10^{-8} \Omega m$ at 1500 K and 30 x $10^{-8} \Omega m$ at 1900 K. Even though there are five data sets (26, 27, 29, 82, 83) from essentially two groups of workers that show agreement within $\pm 4 \times 10^{-8} \Omega m$ at 1700 K, these data are considered not reliable. Those by Anderson et al. [43] (data sets 82, 83) give values that are much too low at lower temperatures, and

those by Baum et al. [44,45] (data sets 26, 27), and by Levin et al. [46] (data set 29) show slopes that are considered too low. In addition, the room temperature value given by data set 26 is much too high (by $\sim 4.5 \times 10^{-8} \Omega$ m than the recommended value). The recommended values from 1300 to 1700 K were derived by extrapolation of the recommended values for lower temperatures with a temperature dependence that was based roughly on the data by Powell and Tye [47] (data set 106) and by Anderson et al. [43] (data set 84). In this temperature range, both of these data sets show a slight curvature toward the temperature axis, and are more or less parallel to each other, even though data set 106 is for a 99.985% pure electrodeposited specimen and data set 84 is apparently for a single crystalline specimen. The slight curvature also appears to be evident in data sets 26, 27, and 29. The recommended values for temperatures from 1700 K to the melting point are based on numerical extrapolation of the values for 1300 to 1700 K. At 1700 K the recommended value is higher by $\sim 11\%$ (or $\sim 9 \times 10^{-8} \Omega$ m) than the data of Baum et al. [44,45] (data set 26, 27), and at 2100 K it is higher by 12% (or $12 \times 10^{-8} \Omega$ m). Anderson et al. [43] (data sets 82, 83) reported sudden increase in electrical resistivity values at \sim 1900 K, which they attributed to the evaporation of sample material. There was no evidence of such behavior from the data of Baum et al. [44,45] (data sets 26, 27) and those of Levin et al. [46] (data set 29). Neither was evident from the data of Grube and Knabe [48] (data sets 6-8) which were apparently for specimens that were either porous and/or less pure.

There are only three data sets on the electrical resistivity of chromium in the molten state: by Baum et al. [44,45] (data sets 26, 27) and by Levin et al. [46] (data set 29). As it is mentioned in the last paragraph, the electrical resistivity values of these data for lower temperatures appeared to be questionable. The recommended value for the electrical resistivity of molten chromium at the melting point was obtained by multiplying the recommended value for solid chromium at the melting point by the ratio of the electrical resistivity values (101.5 and 108.1 x $10^{-8} \Omega$ m, respectively, for the solid and the molten states) reported explicitly in the text by Baum et al. [45] (data set 27). For temperatures above the melting point, the recommended values were calculated according to a linear dependence based on data sets 26 and 29.

The recommended values both uncorrected and corrected for thermal expansion of the material are presented in table 1, while only the uncorrected values are

shown in figures 1 and 2 along with the experimental data. The values are applicable to chromium of purity 99.98% or higher; however, those values for temperatures below 100 K are applicable only to chromium having a residual resistivity of 0.0306 x 10^{-8} Ω m. The estimated uncertainty in the recommended values is about $\pm 5\%$ up to 1300 K. The uncertainty increases with temperature at higher temperatures and is estimated to be $\pm 10\%$ immediately below the melting point, and $\pm 15\%$ for the molten state.

From the available data, it appears that the low-temperature resistivity of chromium of lower purity can be obtained by the use of the Mattheissen's rule if the residual resistivity of a specimen does not exceed $\sim 0.2 \times 10^{-8} \Omega m$. Thus, using the recommended values and the Mattheissen's rule, the data for the specimen CrB of Moore et al. [10] (data set 47) would be reproduced to within $\sim \pm 5\%$. For the data of Chiu et al. [22] (data set 46), it was $\sim \pm 10\%$. Generally, this method underestimates the resistivity values. And even though the derivation from Mattheissen's rule can be negative for some dilute chromium alloys, it is not likely to occur for chromium of reasonable purity.

The recommended values uncorrected for thermal expansion given in table 1 can be represented approximately by the following expressions to within $\pm 0.5\%$. 1-90 K:

$$\rho = 0.0306 + 5.756 \times 10^{-7} T^{3 \cdot 23}$$
(11)

90-293 K:

$$\rho = 0.398 - 2.950 \times 10^{-2} T + 5.112 \times 10^{-4} T^2 - 9.218 \times 10^{-7} T^3$$
(12)

293-305 K:

$$\rho = 250.125 - 2.65115 T + 9.68307 \times 10^{-3} T^2 - 1.16108 \times 10^{-5} T^3$$
(13)

305-311 K:

$$\rho = 1.4614467 \times 10^4 - 1.4360559 \times 10^2 T + 4.7073008 \times 10^{-1} T^2 - 5.142874 \times 10^{-4} T^3$$
(14)

312-400 K:

$$\rho = 27.036 - 1.5301 \times 10^{-1}T + 4.5057 \times 10^{-4}T^2 - 3.4505 \times 10^{-7}T^3$$
 (15)
400-1300 K:

 $\rho = 4.457 + 1.3084 \times 10^{-2}T + 4.9046 \times 10^{-5}T^{2} - 3.0031 \times 10^{-8}T^{3} + 8.653 \times 10^{-12}T^{4}$ (16)

1300-2133 K:

$$\rho = -49.515 + 1.11856 \times 10^{-1} T - 2.3954 \times 10^{-5} T^2 + 3.4937 \times 10^{-9} T^3$$
(17)

(18)

2133-2300 K:

 $\rho = 14.54 + 0.050 \text{ T}$

It should be emphasized that these expressions do not necessarily suggest any theoretical justification, and should be treated, most appropriately, as numerical aids only. It should also be understood that giving these expressions does not imply a recommendation for the temperature derivative of the electrical resistivity.

S. (16)

T	ρ)	T		ρ
	uncorrected	corrected	_	uncorrected	corrected
1	0.0306	0.0306	316	12.785	12.786
4	0.0307	0.0307	320	12.905	12.907
7	0.0309	0.0309	350	13.888	13.891
10	0.0316	0.0316	400	15.84	15.86
15	0.0342	0.0342	500	20.05	20.08
20	0.0398	0.0398	600	24.60	24.66
25	0.0495	0.0495	700	29.43	29.53
30	0.0646	0.0645	800	34.48	34.64
35	0.0865	0.0864	900	39.75	39.98
40	0.117	0.117	1000	45.21	45.52
50	0.207	0.207	1100	50.89	51.30
60	0.349	0.349	1200	56.84	57.37
70	0.555	0.554	1300	63.09 _b	63.78 _b
80	0.838	0.837	1400	69.72 ^b	70.56 b
90	1.212	1.21	1500	76.16	77.18
100	1.64	1.64	1600	82.44 ^b	83.68 ^h
150	4.36	4.36	1700	88.58	90.05
200	7.57	7.57	1800	94.59	96. 3 3 ⁵
250	10.57	10.57	1900	100.5 ^D	102.5 ^D
273	11.69	11.69	2000	106.3	108.7
293	12.45	12.45	2100	$112.1_{\rm b}^{\rm b}$	114.8 ^b
300	12.650	12.650	2133	<u>114.0'(s)</u>	<u>116.8 (s)</u>
306	12.760	12.761	2133	121.4 ^b (l)	124.4 ^b (l)
308	12.779	12.780	2200	124.8 ^D	127.8 ^b
309	12.779	12.780	2300	129.8	132.8
310	12.769	12.770			
311	12.739	12.740			
311.7	12.670	12.671			
312	12.673	12.674			
314	12.728	12.729			

TABLE 1. RECOMMENDED VALUES FOR THE ELECTRICAL RESISTIVITY OF CHROMIUM^a

[Temperature, T, K; Electrical Resistivity, ρ , $10^{-8} \Omega$ m]

^a The values are for chromium of purity 99.98% or higher, but those below 100 K are applicable only to chromium having a residual resistivity of 0.0306 x $10^{-8} \Omega$ m. The columns headed uncorrected and corrected refer to values uncorrected and corrected for thermal expansion, respectively. Solid line separating tabular values indicates solid to liquid state transformation.

A7.44

^D Provisional value.

			TABLE	2. MEA	SUREMENT INFO	RMATION ON THE E	LECTRICAL RESISTIVITY OF CHROMIUM Cr
Deta Set No.	Ref.	Author (s)	Year	Me thod Used	Temp. Range, K	Name and Spectmen Designation	Composition (weight percent), Specifications and Remarks
*	49	McLennan, J.C. and Niven, C.D.	1927	œ	2.4-290	Unaged-I	Trace of Cu; strip sample obtained from General Electric Co. of England; electrolytically deposited sheet ground down to 3.81 cm (1.5 in.) long and 0.475 cm (0.187 in.) thick; unannealed; data un- corrected for thermal expansion.
5*	49	McLennan, J.C. and Niven, C.D.	1927	£	2.2-290	Unaged-11	Trace of Cu; strip sample; material obtained from General Electric Co. of England; electrolytically deposited sheet dissolved in acid with aid of electrical potential; unannealed; data uncorrected for thermal expansion.
ŧ.	49	McLennan, J.C. and Niven, C.D.	1927	£	20.6-292	Aged-1	Similar to the above specimen; annealed for 1 h at comparatively low temperature, cooled to room temperature, annealed for 2 h at much higher temperature; data uncorrected for thermal expansion.
4	50	McLennan, J.C., Niven, C.D., and Wilheim, J.O.	1928	8	2.3-293		The above specimen with measurements extended to lower temperatures (there is an apparent discrepancy between values at 80 K between data set and the above).
* 5	48	Grube, G. and Knabe, R.	1936	¥	373-1673		"Pure Cr."
ę	87	Grube, G. and Knabe, R.	1936	¥	293-2073		Electrolytic Cr, sintered in H ₂ atmosphere at 16/3 K; density 6.95 x 10 ³ kg cm ⁻³ .
*	48	Grube, G. and Knabe, R.	1936	×	1643-1973	£	Electrolytic Cr, remeited and measured in an Ar atmosphere.
*	48	Grube, G. and Knabe, R.	1936	×	1643-1933	£	The above specimen measured with decreasing temperature.
*	48	Grube, G. and Knabe, R.	1936	~	1553-1973	υ	Electrolytical Cr, remelted and measured in an Ar atmosphere.
10*	6 4	Grube, G. and Knabe, R.	1936	¥	1563-1953	υ	The above specimen measured with decreasing temperature.
11*	15	Potter, H.H.	1941	^	87-1064		"99.99" pure; 1 cm long; annealed at 873 K.
12	21	Potter, H.H.	1941	>	87-941		Similar to the above; outgassed just below the melting point by electron bombardment.
13*	14	Harper, A.F.A., Kemp, W.R.G., Klemens, P.G., Tainsh, R.J., and Mhite, G.K.	1957	U	4.2	Sample I	99.998 pure; supplied by Dr. H.L. Wain of the Aeronautical Res. Lab., Commonwealth Dept. of Supply; 3 mm in diam and 8 cm long; cold worked; temperature 4.2 K assumed.
14*	1	Harper, A.F.A., et al.	1957	U	4.2	Sample 2	The above specimen annealed in vacuum at 1323 K for 4 h.
* Not	shown	in figure.					

Ret a	Ref.	Author (s)	Year	Me thod Used	Temp. Range,K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
15*	14	Harper, A.F.A., Kemp, W.R.G., Klemens, P.G., Tainsh, R.J., and White, G.K.	1957	U	4.2	Sample 3	Similar to the above; partially recrystallized after cold worked.
16*	14	Harper, A.F.A., et al.	1957	U	4.2	Sample 4	The above specimen; annealed.
17	14	Harper, A.F.A., et al.	1957	ც	4.2-320	Sample 5	Similar to the above; cold worked and fully recrystallized.
18*	52	De Morton, M.E.	1958		200-344		0.013 0 ₂ , 0.0015 C, 0.0005 Al, Fe, N ₂ and Si each, 0.00027 H ₂ (3N1/ 100 gm), 0.0002 Cu, Mg, and Pb each, and 0.00001 Ag; metallic impuri- ties spectrographically determined; 0.073 cm diam and 20.7 rm long; arc-melted electrolytic CT ingot 1.5 in. diam; extruded to 0.5 in. diam; swaged to 0.2 in. diam; drawn at 573 K to 0.027 in. diam; given a 3X reduction at 423 K; total reduction 98X.
19*	52	De Morton, M.E.	1958		200-346		The above specimen annealed at 973 K for 15 min. under a vacuum of 2×10^{-4} wmHg; "completely recrystallized".
20*	23	Nevmann, M.M. and Stevens, K.W.H.	1959	۲	94-390		Spectrographically standardized chromium supplied by Johnson and Matthey Co.; contains dissolved oxygen; 2 cm long; machined; sealed in evacuated quartz tube and annealed at 1200 K for 1 month.
21*	54	Sabine, T.M. and Svenson, A.C.	1968	Ð	301-328		0.024 0 ₂ and 0.015 N ₂ ; supplied by Aeronautic Res. Lab., Meltourne; hot extruded (1373 K); 0.5 in. in diam and 3 in. long; measured with an AC bridge at 50 Hz; error of measurement 13.
22*	54	Sabine, T.M. and Svenson, A.C.	1968	٩	291-328		Similar to the above, annealed at 1373 K.
23#	54	Sabine, T.M. and Svenson, A.C.	1968	Q	289-328		Similar to the above, annealed at 1673 K; fine grained.
24*	54	Sabine, T.M. and Svenson, A.C.	1968	Q	289-328		Similar to the above, annealed at 1673 K; course grained; grain diam 0.25 in. approximately.
25*	55	Hamaguchi, Y. and Kunitomi, N.	1964		295-810		99.9 pure; cut by diamond saw; measured in vacuum.
26	44	Baum, B.A., Cel'd, P.V., and Sachil'nikov, S.I.	1964	×	300-2194		99.98 pure.
27	45	Baum, B.A., Gel'd, P.V., and Sachil'nikov, S.I.	1963	æ	1673-2113		>99.98 pure (specimen appears to be the same as the above);resistivity values at melting point (reported at 2113 K approximately) from text.
* Not	hown	in figure.					

Pata Set a	Ref. No.	Author (s)	Year	Me thod Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
28#	56	Pavars, I.A., Baum, B.A., and Gel'd, P.V.	1969	æ	2013		99.98 pure, doubly refined electrolytic chromium; melted in a fusion induction furnace in an argon atmosphere of 500 mmMg.
29	46	Levin, E.S., Gel'd, P.V., and Ayushina, G.D.	1973	æ	1084-2261		99.98 pure, doubly refined electrolytic.
30#	57	Levin, E.S.	1971	ĸ	£791		99.98 pure, doubly refined.
31*	58	Fine, M.E., Greiner, E.S., and Ellis, W.C.	1951	×	78-401		99.8 pure; prepared by cold pressing sintered electrolytic powder compact; annealed at 1673 K in purified helium.
32*	85	Fine, M.E., et al.	1951	<	275-377		99.998 pure, from electrochemical analysis by E.K. Jaycox, no Fe or Ni detected; electroformed from an aqueous solution by R.A. Ehrhardt and G. Brittrich, using the method of Brennar, Burhead and Jennings, NBS J. of Res., <u>40</u> , 31, (1948); vacuum annealed at 1273 K with speci- men packed in chromium powder.
33	38	Mitsui, T. and Tomizuka, C.T.	1965	K	243-331		0.08 N and 0.03 O, others not detectable spectrographically; supplied by Prof. R. Street of Monash Univ., Melbourne; 0.5 mm vide, 0.5 mm thick and 58 mm long approximately; manufactured from ARL chromium ingot; ground and formed; annealed and recrystallized at 1523 K for 2 h; resistivity values calculated from reported $\rho(T)/\rho(273 \text{ K})$ and reported $\rho(273 \text{ K}) = 12.7 \times 10^{-6} \Omega m$.
34*	38	Mitsui, T. and Tomízuka, C.T.	1965	V	243-322		The above measured with decreasing temperature.
35*	38	Mitsui, T. and Tomizuka, C.T.	c961	~	243-330		The above measured under a pressure of 0.98 kbar.
36#	99	Mitsui, T. and Tomizuka, C.T.	1965	×	243-326		The above with decreasing temperature.
37*	38	Mitsui, T. and Tomizuka, C.T.	1965	×	243-331		The above measured under a pressure of 1.96 kbar.
38*	38	Mitsui, T. and Tomizuka, C.T.	1965	4	243-329		The above with decreasing temperature.
39#	38	Mitsui, T. and Tomizuka, C.T.	1965	×	243-331		The above measured under a pressure of 2.94 kbar.
* 0 *	38	Mitsui, T. and Tomizuka, C.T.	1965	×	243-326		The above measured under a pressure of 5.30 kbar.
* Not	shown	in figure.		1			

Bata Set a	Ref.	Author (s)	Year	Method Úseď	Temp . Range , K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
41*	8	Mitsui, T. and Tomizuka, C.T.	1965	v	243-326		The above with decreasing temperature.
424	8	Mitsui, T. and Tomizuka, C.T.	1965	<	243-325		The above measured under a pressure of 7.16 kbar.
434	8	Mitsui, T. and Tomizuka, C.T.	1965	۲	243-326		The above measured under a pressure of 7.85 kbar.
4	29	Barykin, B.M., Gordon, V.G., Levinov, B.M. Rekov, A.I., and Spiridonov, E.G.	1974	>	1124-1938		99.9 ⁺ pure chromium powder; average particle size 5-10 μ m; pressed and sintered at 1973 K; density 7.0 g cm ⁻³ ; porosity 1.5%.
45#	59	Barykin, B.M., et al.		^	1120-1976		Similar to the above.
46	22	Chiu, C.H., Jericho, N.M., and March, R.H.	1971	>	5.1-313		0.0012 02 and Fe each, 0.0010 S1, 0.00009 N2, 0.00003 A1, Ca and N1 each, 0.00002 H2 and 0.00001 Cu, Mg, and Mn each $(at.\chi)$; " 10^{-2} cm^2 dlameter," and 5 cm long; spark machined; measurement error 2 χ .
47*	10	Moore, J.P., William, R.K., and McElroy, D.L.	1968	~	80-400	CrB	99.98 ⁺ pure; 0.0060 C, 0.0028 N, <0.0020 Ga, 0.0009 H, 0.0008 Mo, 0.0006 0, 0.0005 x, s, and Si each, 0.0004 K, 0.0003 Co, Fe, and U each, <0.0003 Pt, <0.0002 Sr and Zn each, 0.0001 B, <0.0001 Hg, Pd, Rn, Ru, Sb, Te, T1, U, W, and Zr each, <0.00008 Cu and Pb each, 0.00006 Ca, <0.00005 Ag and Ba each, <0.00004 Bi, 0.00001 Mg, Li, and P each (at.1); content of C by combustion analysis, H, N, and 0 by vacuum fusion analysis, and drop-cast into a rod of 1.6 cm diam and into a disc-shaped inget and drop-cast into a rod of 1.6 cm diam and 15 cm long; machined to 0.96 cm in diam and 7.7 cm in length; density 7.15 g cm ³ ; grain diam 440 to 840 µm; $p(273 K)/p(4.2 K) = 58; mea-surement error ±0.38%; smoothed values from table.$
8	10	Moore, J.P., et al.	1968	۲	310-315	CrB	The above in the vicinity of the Néel temperature.
*65	10	Moore, J.P., et al.	1968	•	307-320	CrB	The above measured with a temperature gradient of 0.014 k m $^{-1}$.
k Kot	shown	in figure.		ļ			
1100 K for 4 days and 1200 K for 1 day; p(273 K)/p(4.2 K) = 380; specimen immersed in oil bath maintained to with 1 x 10²³ K of desired temperature; measured with an ac (7 Hz) bridge with an absolute accuracy of 0.2%, and a precision of 0.03%; smoothed values from curve, which is reported to be based on 68 data points and to deviate 0.00004 K and Nb each, <0.00004 B1, <0.00003 Co, <0.00002 Ge, In, and Na each, and <0.00001 Li and Rn each (at.%); same methods of analysis diam and 60 cm long (by BMI); machined to a rod of 0.96 cm diam and 7.7 cm long; density 7.19 g cm⁻³; average grain diam 63 µm; p(273 K)/p(4.2 K) = 280; measurement error ± 0.38 %; smoothed values from table. The above measured in a thermal conductivity apparatus, with tempera-The above specimen on loan from Oak Ridge National Lab.; annealed at The above specimen measured during a thermal conductivity experiment with temperature difference along specimen less than 0.25 K. The above specimen measured during a thermal conductivity experiment above specimen measured during a thermal conductivity experiment 99.98⁺ pure; 0.0070 C, 0.0030 Fe, <0.0020 Au and Mg each, 0.0015 S, 0.0014 0, 0.0010 Mn, <0.0010 Pt, 0.0006 Ca, 0.0005 H and Si each, 0.0003 B, N and U each, 0.0002 Ba, Cu, and Pb each, <0.0002 Ta, 0.0001 Ag and As each, <0.0001 Hg, P, Pd, Ru, Sb, Sn, Te, Tl, U, W, and Zr each, <0.0008 Cd, 0.00005 Ti, <0.00005 Mo, Ni, and Sr each, acket after cleaned and compacted; hot extruded to a rod of 1.6 cm from the measured values by amounts less than the precision of the as above; crystals supplied by Chromalloy Corp.; sealed in vacuum Composition (weight percent), Specifications and Remarks The above measured with a temperature gradient of 0.014 K m^{-1} . with temperature difference along specimen less than 0.5 K. with temperature difference along specimen less than 1.0 K. The above in the vicinity of the Néel temperature. ture difference along specimen less than 0.01 K. ¥. The above after being cooled from 320 K. х. The above after being cooled from 320 K. The above after being cooled from 320 The above after being cooled from 320 neasurements. The Designation Specimen Name and CrA CrA CrA Range, K 308-320 301-318 80-400 307-320 300-319 301-318 301-315 302-319 Temp. 318 301 301 302 Method Used × Δ < ~ Δ Δ ۵ ρ ۵ ρ Þ Year 1968 1970 1970 1970 1970 1970 1968 1968 1970 1970 1970 1970 TABLE 2. Moore, J.P., et al. Moore, J.P. William, R.K., and McElroy, D.L. Moore, J.P., et al. and and and Laubitz, M.J. and Laubitz, M.J. and Laubitz, M.J. and Laubitz, M.J. and and Laubitz, M.J. and Author(s) Laubitz, M.J. Laubitz, M.J. Matsumura, T. Matsumura, T. Matsumura, T. Laubitz, M.J. Laubitz, M.J. Matsumura, T. Matsumura, T. Matsumura, T. Matsumura, T. Matsumura, T. Matsumura, T. Raf. ŝ 2 2 2 • ~ Data ž ş, 51* 52* 53# \$ Ż 55# 56# 57* \$ **2**6 3 **#**19

states a frankrige state of the state of the states of the state of the state of the state of the states of the

* Not shown in figure.

(continued) 5 MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF CHROMIUM

24

s it a	19 19	Author (s)	Year	Me thod Vsed	Temp. Rărge, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
5	34	Moore, J.P., Williame, R.K., and Graves, R.S.	1977	<	293 - 1008	CrA'	Same sample material as the above; average grain diam 50 µm; P(273 K) P(4.2 K) = 280 - 380, depending on thermal cycling; measurement error ±0.38%; corrected for thermal expansion.
*. *.	ž	Moore, J.P., et al.	1977	¥	300-320	CrA'	The above in the vicinity of the Néel temperature; corrected for thermal expansion.
4	₹.	Moore, J.P., et al.	1977	•	371-1172	CrA	From the same stock as the above; thermally cycled during brazing of specimen to heater and nickel heat sink; $p(273 \text{ K})/p(4.2 \text{ K}) = 380$; corrected for thermal expansion.
ν	34	Moore, J.P., et al.	1977	~	518-1319	Cr B	Same specimen material as for Data Set 47; density 7.19 g cm ⁻¹ ; grain size 400 to 800 µm; arc-cast, $\rho(273 \text{ K})/\rho(4.2 \text{ K}) = 58;$ specimen found to have a hairline casting void along its axis, causing approximately 1% change in the measured values; corrected for thermal expansion.
* •	9	Söchtig, H.	1940		79-319	Cr.I	From Dr. Kroll of Luxenburg; cut from a rolled plate; approximate dimensions: 0.12 cm thick, 0.21 cm wide and 1.37 cm long; resistivit values calculated from reported resistances and reported p(273 K) = $19.7 \times 10^{-6} \Omega \text{ m}$.
*	3	Söchtig, H.	1940		20.8-373	Cr I I	Electrolytic chromium; approximate dimensions: 0.21 cm wide, 0.23 cn thick, and 0.58 cm long; resistivity values calculated from reported resistances and reported $p(273 \text{ K}) = 21.1 \times 10^{-8} \text{ Am}$.
*	61	Meaden, G.T., Rao, K.V., and Loo, H.Y.	1969		278-323		99.999 pure; 0.0010 C, 0.0009 O ₁ , 0.0003 Ca, 0.0002 Fe, 0.0001 Al, Cu and Mg each, and 0.0008 Hz; residual resistance ratio 178.
* 6	11	Meaden, G.T. and Sze, N.H.	1969		301-317		99.999 pure; 0.0010 C, 0.0008 0, 0.0003 Ca and N ₂ each, 0.0002 Fe, 0.0001 AI, Cu, and Ng each, and 0.00008 Hz; cast fodde chromium machined to 3.8 mm in diam and 65 mm in length; unannealed; $\rho(295 \text{ K})/\rho(4.2 \text{ K}) = 178$; measured with increasing temperature (specimen is apparently the same as the above).
*	11	Meaden, G.T. and Sze, N.H.	6961		300-318		The above specimen measured with decreasing temperature.
*	12	Meaden, G.T., Rao, K.V., and Loo, H.Y.	1969		100-145		99.999 pure; 0.0010 C, 0.0008 0_2 , 0.0003 Cs, 0.0002 Fe, 0.0001 Al, C and Mg each; residual resistivity ratio 178 (specimen is apparently the same as the above).
5 *	ព	Meaden, C.T. and Sze, N.H.	1969		101-140	Cr-0	99.999 pure; unannealed; grain diam 0.25 mm; residual resistivity ratio 178 (specimen is apparently the same as the above).
	13	Meaden, G.T. and Sze, N.H.	1969		116-124	Cr-0	The above in the vicinity of the spin-filp transition.

		TAB	LE 2.	MEASUREMEN	IT INFORMATIO	N ON THE ELECTRI	CAL RESISTIVITY OF CHROMIUM Cr (continued)
Ret Bata	Ref.	Author (s)	Year	Method Used	Temp. Range,K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
74.*	13	Meaden, G.T. and Sze, N.H.	1969		101-140	Cr-1	Similar to the above except annealed at 1473 K for 1 h.
15*	13	Meaden, G.T. and Sze, N.H.	1969		116-125	Cr-1	The above in the vicinity of the spin-flip transition.
76*	13	Meaden, G.T. and Sze, N.H.	1969		101-140	Cr-50	Similar to the above except annealed for 75 h at temperatures above 1273 K, 50 h of which is at 1473 K; grain diam 2 to 4 mm; grain orien- tation is random as determined by x-ray Laue photography; residual resistivity ratio 295.
*11	13	Meaden, G.T. and Sze, N.H.	1969		117-125	Cr-50	The above in the vicinity of the spin-flip transition (discrepancies between these two data sets are due to graph-reading errors).
78*	28	Meaden, G.T., Rao, K.V., and Tee, K.T.	1970		202-329		Pure chromium sample; annealed in vacuum $(10^{-6}$ Torr) for 75 h above 1273 K of which 50 h is at 1473 K; grain diam 2 to 4 mm; residual resistivity ratio 295 (specimen is apparently the same as the above).
61	51	Goff, J.F.	1970	×	2.4-343	Cr I I	99.92 pure; 0.005 Fe, 0.004 Mn, 0.003 Cu, 0.002 Mg, and balance mostly S, P, N1 and Mn; electrolytic; meited with argon arc, cast in oxygen-free copper boat; annealed twice at 1173 K for 24 h; ground to approx-fmate dimensions of 4 mm wide, 4 mm thick and 50 mm long; polycrystalline; $p(297 \text{ K})/p(4 \text{ K}) = 88$; average residual resistivity 0.145 x $10^{-6} \Omega m$; measurement error 13.
80*	15,	Goff, J.F. Goff, J.F.	1970 1968	۲	1.2-286	CrI	Similar to the above except $p(297 \text{ K})/p(4 \text{ K}) = 72$ and average residual resistivity (1.2 K to 12.9 K) = 0.1834 x 10^{-8} Rm .
81*	62	Moore, J.P., Williams, R.K., and McElroy, D.L.	1969	V	90-360		The above specimen; p(296 K)/p(4.2 K) = 70.5; smoothed values from table.
83	64	Anderson, J.M., Stewart, A.D., and Ramsay, I.	1970	۲	330-1973		Single crystal produced by the iodide process; supplied by Material Research Corp.; 0.0025 interstitial impurities and 0.0015 substitutional impurities, quoted by manufacturers; 1 mm thick, 1 mm wide and 5 mm long; cut by a combination of diamond sav, rpark planning and electropolishing techniques; measurement done in a high purity hydrogen atmosphere; reported errors in resistivity value 0.002%, and in temperature 0.2%; values corrected for thermal expansion using expansion data of B.N. Vasyutinskii, G.N. Katurazov and G.N. Finkel, Soviet PhysPhys. Met. Metallog., <u>12</u> , 141 (1961); rapid increase of resistivity above 1730 K was reported to be due to evaporation of material.
83	64	Anderson, J.M., et al.	1970	۲	391-1905		Similar to the above, except supplied by Koch-Light Lab. and containing 0.0021 interstitial and 0.0005 substitutional impurities.
94	64	Anderson, J.M., et al.	1970	×	1272-1724		"Crystal 3"; no specimen detail reported; measured with decreasing temperature.
Not	shown	in figure.		l			

Data Set	Ref.	Author (s)	Year	Method Nised	Temp. Rance K	Name and Specimen	Composition (weight percent), Specifications and Remarks
85#	3	Anderson, J.M., Stewart, A.D., and Ramsay, I.	1970	V	1482-1740	Designation	The above specimen; measured with increasing temperature.
86*	64	Anderson, J.M., et al.	1970	¥	1469-1693		The above specimen; measured with decreasing temperature again.
87	36	Anderson, J.M., Stewart, A.D., and Ramsay, I.	1972	۲	285-324		0.0012 02 and Fe each, 0.0010 Si, 0.00009 N ₂ , 0.00002 H ₂ , <0.000001 C and 0.0002 others (at. χ); single crystal prepared from Koch-Light crystalline, cut with diamond saw, spark planned and electropolished; 1 mm thick, 1 mm wide and 7 mm long; specimen axis parallel to the [100] direction; annealed at 1970 K for 3 h in hydrogen; T _N 311.5 K.
88*	36	Anderson, J.M., et al.	1972	¥	282-324		The above specimen deformed at a strain rate of 5 x 10^{-5} s^{-1} ; T_N 309 K.
#68	36	Anderson, J.M., et al,	1972	¥	11		0.03 02, 0.02 Hz, 0.0030 C and 0.0010 Nz (at.X); polycrystal from vacuum melted ingot; average grain size 1 mm.
*06	63	Marcinkowski, M.J. and Lipsitt, H.A.	1961		199-414		Pure; plastically deformed: 96% reduction in area at 623 K.
\$16	63	Marcinkowski, M.J. and Lipsitt, H.A.	1961		283-323		The above specimen in the vicinity of the Néel temperature.
92	63	Marcinkowski, M.J. and Lipsitt, H.A.	1961		196-425		The above specimen recrystallized by annealing at 1323 K for 1/2 h.
93*	63	Marcinkowski, M.J. and Lipsitt, H.A.	1961		284-323		The above specimen in the vicinity of the Néel temperature.
446	17 18	Arajs, 'and Colvin, R.V., and Marcinkowski, M.J. Calvin, R.V. and Arajs, S.	1962 1962	×	298-315		0.055 02 and <0.001 N2; single crystal; 0.235 cm thick, 0.254 cm wide and 0.900 cm long; long axis of specimen aligned to within 1 degree of the [100] direction; measured at temperatures in the order: 297.4, 305.3, 306.1, 307.2, 313.5, 314.5, 312.4, 311.4, 310.3, 308.8, 309.5, and 309.6 K.
95*	17 . 18	Arajs, S., et al.	1962	×	310-328		The above specimen measured after being left overnight at 309.6 K; measurements between 309.6 K and 312.7 K were done over a period of 8 h, changing temperature slowly; the rest of the data points were obtained the following day.
96 *	17, 18	Arajs, S., et al.	1962	×	312		The above specimen, cooled; "leaving the crystal at this temperature overnight did not change the value of the resistivity".
*16	17, 18	Arajs, S., et al.	1962	¥	78		The above specimen; heated to 373 K and cooled rapidly to 78 K, and kept at 78 K for two days.
98 #	17.	Arajs, S., et al.	1962	۷	78-140		The above specimen.
*66	17,	Arajs, S., et al.	1962	×	4.2.330		The above specimen, cooled to 78 K, left overnight and cooled to 4.2 K; measurements in the temperature ranges, 4 to 115 K, 130 to 155 K,
* Not	ahown	in figura.		Ī			155 to 215 K, and 215 to 295 K were done in successive days.

ket a	т. жо.	Auchor (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent). Specifications and Remarks
8	19	Arajs, S. and Dunayre, G.R.	1965	~	4-297		0.0013 0, 0.0010 C and Si each, 0.0001 Ca, Mg, N, and Ni each, and 0.00005 H, others not detected; contents of 0, H, and N determined by vacuum fusion, of C by combustion, and the rest by spectroscopic methods; arc-melted polycrystalline ingest $0.7 \times 1.6 \times 8.0 \mathrm{cm}$ supplied by Chromailoy Corp.; cut by surface grinding machine to $0.478 \pm 0.001 \mathrm{cm}$ thick, $0.476 \pm 0.001 \mathrm{cm}$ viacums $10, 0.053 \mathrm{K}/10.13 \pm 0.001 \mathrm{cm}$ this ingest $0.7 \times 1.6 \times 8.0 \mathrm{cm}$ supplied by Chromailoy Corp.; cut by surface grinding machine to $0.478 \pm 0.001 \mathrm{cm}$ thick. $7_{\rm N}$ 313.0 $4.0.7 \mathrm{K}/2 \mathrm{K}/10.4.2 \mathrm{K}/10.1 \mathrm{cm}$ this curve does not repeated to rest the measurement B h; specimen was left at 290.5 K for 15 h without detectable change in resistivity (due to small size of graph, data points below 80 K are selected values; hence this curve does not represent all the measurements reported by the such to rest.
*101	19	Arajs, S. and Dunmyre, G.R.	1965	¥	300-318		The above specimen in the vicinity of the Néel temperature; duration of measurement 8 h.
102*	20	Araja, S., DeYoung, T.F., and Anderson, E.E.	1970	~	9-1035		From the same stock as the above.
103	24	Cox, J.E. and Lucke, W.N.	1967	t	299-1281		99.999 iodide chromium; melted 15 to 18 times in 2/3 atmosphere of ionization grade; 99.999 pure argon; spark eroded to cylindrical form; centerless-ground to 1/8 in. diam and 2 1/2 in. long; wrapped in molybdenum foil and annealed at 1523 K in 1/2 atmosphere of ionization grade helium; water quenched and etched; measured by a method by Dauphinee, T.M. and Mooser, E., Rev. Sci. Instr., 26, 660, 1955.
**01	25	Taylor, M.A.	1962		17-359		99.99 pure; 0.01 0, \sim 0.0001 N, C, S and Sn each, and <0.0001 others; electrolytic; supplied by the Aeronautical Res. Lab., Melbourne; smoothed values from curve.
105*	64	Taylor, M.A. and Smith, C.H.L.	1962	v	20-273		99.99 pure; supplied by the Aeronautical Res. Lab., Melbourne; 1 mm wide, 1 mm thick, and 10 mm long; cut with carborundum slitting wheel; annealed at $1073 \times for 50$ h in vacuum; measurement ertor 1%.
106*	47	Powell, R.W. and Tye. R.P.	1956	4	94-1707		99.965 pure; <0.01 N and <0.005 0 (as Cr ₂ 0 ₃); electrodeposited chromium 1.28 cm 0.D., 0.63 cm 1.D. and 18.05 cm long; prepared from chromium flakes supplied by Johnson Matthey Co.; enclosed in alwaina tube and heat-treated at 443, 486, 678, 818, 1133, 1327, and 1683 K, with the five last treatments done in vacuum; reductions of 0.010 cm in 0.D. and 1.D. are observed after final treatment; initial density 6.975 x 10^3 kg m^{-3} , after final treatment 7.15 x 10^3 kg m^{-3} .
107*	47	Powell, R.W. and Tye, R.P.	1956	4	273-333		The above in the vicinity of the Néel temperature.
#80I	26	Muheim, J. and Müller, J.	1964	t	100-339		Cylindrical specimen l mus in diam and 50 cm long; measured by a com- pensation method.

(06) (1) (15)	Set a Set a	Ref.	Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
110 5 Tower, N. E., Gal'A, P. Y. E. 100 0.00 Instantion: p = 45 × 0.00 Not water end of a state of other and Gal'A, P. Y. E. 111 6 Newrer, N. E. 107 A 95-00 Phycrystation: p = 45 × 0.00 Not water and control of the state description: p = 45 × 0.00 Not water and control of the state description in the state, in an vide, in an intervision in the state description in the state description in the state description in the state description in the state control of the state description in the state d	109*	23	DeVries, G.	1959		165-356		Prepared by Prof. Fast, Eindhoven.
11. 6. Warreno, L.C. and Rouce, V.N 97 A 8-400 Dispersion in an end of a manufactural frame that, in which a distribution resonance and in an end of a manufactural frame that in a limit in transfer of resonance and in an end of a manufactural frame and in a frame that in a limit in transfer of resonance and in a manufactural frame and in a frame and in a frame and in a frame and resonance and in a manufactural frame and in a frame and in a frame and resonance and in a frame and in a frame and resonance and in a frame and in a frame and resonance and in a frame and in a frame and resonance and in a frame and in a frame and resonance and in a frame and in a frame and resonance and in a frame and in a frame and resonance and in a frame and in a frame and resonance and in a frame and in a frame and resonance and in a frame and in a frame and in a frame and resonance and in a frame and in a frame and in a frame and in a frame and resonance and in a frame and in a frame and in a frame and in a frame and resonance and in a frame and resonance and in a frame and in a fra	110*	65	Zinowiev, V.E., Krentsis, R.P., and Gel'd, P.V.	6961		300-1800		0.05 total impurity; residual resistance ratio = 65; values calculated from reported equations: $p = 4.8 \times 10^{-2}$ T, T < 800 K and $p = 4.8 \times 10^{-2}$ T + 3.1 x 10 ⁻⁶ (T-800) ² , T > 800 K.
11 3 Stebler, B. 1970 A 29-344 3995 pure, 0.0002 N; single crystal; 7 m thtick, 8 m vide and restriction fullor structure transmission sequested with increasing temperature; restriction states to in the vicinized for severation sequested with increasing temperature; restriction sequested in sequested with sequested in sequested in sequested i	*111	66	Maystrenko, L.G. and Polovov, V.M.	1977	¥	89-400		Polycrystalline; appropriate dimensions 1 mm thick, 1 mm wide, and 10-15 cm long; annealed at 1273 K for 24 h in helium; furnace cooled; measurement error ±5%.
113Stehler, B.1970A20-310The above speciaent in the vicinity of the Meil temperature: with increasing temperatures.1163Stehler, B.1970A30-316The above speciaent in the vicinity of the Meil temperature: with increasing temperatures.1133Stehler, B.1970A30-316The above speciaent in the vicinity of the Meil temperature: meanured vicinity interasing temperatures.11637Trego, A.L. and1968277-3200.0022 C, 0.0030 N, 0.0016 0 and 0.0001 N (at.3); lodide Cr supplied for prophosphoric acid; annual L: S on long, cut by spark recond net- top of preasilie temperatures.11637Trego, A.L. and1968277-3200.0022 C, 0.0030 N, 0.0016 0 and 0.0001 N (at.3); lodide Cr supplied for spark recond net- top of preasilie temperatures.11837Trego, A.L. and1968277-3100.002 N (at 0.001 N (at.3); lodide Cr supplied for spark recond net- top of spark recondent net- top of spark resonance of trop of spark recondent	112	;E	Stebler, B.	1970	۲	296-344		99.996 pure, 0.0002 N ₂ ; single crystal; 7 mm thick, 8 mm wide and 25 mm long; specimen axis v 8 degrees of arc from the [100] direction; measured with increasing temperature; resistivity values calculated from reported $\Delta \rho / \rho_0$, where ρ_0 is the resistivity at 273.2 K, taken to be 11.687 x $10^{-8} \Omega m$.
114 33 Stehler, B. 1970 A 305-316 The above speciaen in the vicinity of the Néel temperature; measured vith increasing temperature; 115 33 Stehler, B. 1970 A 305-316 The above speciaen in the vicinity of the Néel temperature; measured vith increasing temperature; 116 37 Trege, AL, and 1968 277-320 0.0072 c, 0.0030, 0.0016 0 and 0.0014 (at.7); iodda Cr supplied vited in the vicinity of the Néel temperature; 116 37 Trege, AL, and 1968 277-320 0.0072 c, 0.0030, 0.0016 0 and 0.0014 (at.7); iodda Cr supplied in the vicinity of the Néel temperature; 118 37 Trege, AL, and 1968 272-310 0.0072 c, 0.0030, 0.0016 0 and 0.0014 (at.7); iodda Cr supplied in the vicinity of the Néel temperature; 118 37 Trege, AL, and 1968 272-310 10.9013 dist; 10.011 dist; 10.013 dist; 10.001 dis; 10.001 dist;	113	33	Stebler, B.	1970	V	287-350		The above specimen measured with decreasing temperature.
115 33 Stebler, B. 1970 A 305-316 The above specimen in the vicinity of the Néel temperature: measured with decreasing temperature: 116 37 Trego, A.I. and the stand of the	114	33	Stebler, B.	1970	A	305-316		The above specimen in the vicinity $\mathfrak{o}_{\tilde{\mathbf{i}}}$ the Néel temperature; measured with increasing temperature.
11637Trego, A.L. and Mackintosh, A.R.1968277-3200.0072 C, 0.0030 N, 0.0016 0 and 0.0001 H (at. X); lodide Cr supplied by Otronalizy Corp.; arc matted: single crystal 2 ma square cross saction and 1.5 cm long, cut by spark erosion tech- nique from cross saction and 6 f.i. long ingo; electropolished in orthophosphoric action and and 0.0001 H (at. X); lodide Cr supplied for transing crystal and 0.0001 H (at. X); lodide Cr supplied for the product and 0.0001 H (at. X); lodide Cr supplied for the product and 0.0001 H (at. X); lodide Cr supplied for the phosphoric action and 0.0001 H (at. X); lodide Cr supplied for the phosphoric action and 0.0001 H (at. X); lodide Cr supplied for the phosphoric action and 0.0001 H (at. X); lodide Cr supplied for the phosphoric action and 0.0001 H (at. X); lodide Cr supplied for the phosphoric action and 0.0001 H (at. X); lodide Cr supplied for the phosphoric action and 0.0001 H (at. X); lodide Cr supplied for the phosphoric action and 0.0001 H (at. X); lodide Cr supplied for the phosphoric action and 0.0001 H (at. X); lodide Cr supplied for the phosphoric action and 0.0001 H (at. X); lodide Cr supplied for transverse action and 0.0001 H (at. X); lodide Cr supplied for transverse action and 0.0001 H (at. X); lodide Cr supplied for transverse action and 0.0001 H (at. X); lodide Cr supplied for transverse action and 0.0001 H (at. X); lodide Cr supplied for transverse action and 0.0001 H (at. X); lodide Cr supplied for transverse action and 0.0001 H (at. X); lodide Cr supplied for transverse action and 0.0001 H (at. X); lodide Cr supplied for transverse action and 0.0001 H (at. X); lodide Cr supplied for transverse action and 0.0001 H (at. X); lodide Cr supplied for transverse action and 0.0001 H (at. X); lodide Cr supplied for transverse action and 0.0001 H (at. X); lodide Cr supplied for transverse action and	115	33	Stebler, B.	1970	A	305-316		The above specimen in the vicinity of the Néel temperature; measured with decreasing temperature.
11737Trego, A.L. and Mackintosh, A.R.1968272-310The above specimen measured after cooled through the Néel temperature in a longitudinal magnetic field of 55 kG.11837Trego, A.L. and Mackintosh, A.R.1968275-311The above specimen but measured after cooled through the Néel temper- ature in a transverse magnetic field (either in [010] or [100] direc- tion) of 55 kG.11937Trego, A.L. and Mackintosh, A.R.1968270-310The above specimen but measured after cooled through the Néel temper- ature in a longitudinal magnetic field (either in [010] or [100] direc- tion) of 55 kG.11937Trego, A.L. and Mackintosh, A.R.1968270-31012037Trego, A.L. and Mackintosh, A.R.1968270-31012037Trego, A.L. and Mackintosh, A.R.1968270-31312037Trego, A.L. and Mackintosh, A.R.1968270-313	116	31	Trego, A.L. and Mackintosh, A.R.	1968		277-320		0.0072 C, 0.0030 N, 0.0016 O and 0.0001 H (at.X); lodide Cr supplied by Chromalloy Corp.; arc melted and arc zone melted; single crystal 2 mm square cross section and 1.5 cm long, cut by spark erosion technique from 0.5 in. diam and 6 in. long ingot; electropolished in orthophosphoric acid; annealed in vacuum at 1273 K for 50 h; sample length parallel to crystal [001] axis; resistivity values calculated from reported resistance R(T) and R(320 K), with $\rho(320 \text{ K})$ taken to be 12.906 x 10 ⁻⁸ Ω m.
11837Trego, A.L. and Mackintosh, A.R.1968275-311The above specimen but measured after cooled through the Néel temper- tion) of 55 kG.11937Trego, A.L. and Mackintosh, A.R.1968270-310The above specimen, but measured after cooled through the Néel temper- 	117	37	Trego, A.L. and Mackintosh, A.R.	1968		272-310		The above specimen measured after cooled through the Néel temperature in a longitudinal magnetic field of 55 kG.
11937Trego, A.L. and1968 $270-310$ The above specimen, but measured after cooled through the Néel temper- ature in a longitudinal magnetic field of 40.5 kG; resistivity value calculated from reported $\Delta\rho/\mu(T_N)$, with $\rho(T_N)$ taken to be 12.70 x $10^{-8} \Omega m$.12037Trego, A.L. and Mackintosh, A.R.1968 $270-313$ 12037Trego, A.L. and Mackintosh, A.R.1968 $270-313$ 12037Trego, A.L. and Mackintosh, A.R.1968 $270-313$	118	37	Trego, A.L. and Mackintosh, A.R.	1968		275-311		The above specimen but measured after cooled through the Néel temper- ature in a transverse magnetic field (either in [010] or [100] direc- tion) of 55 kG.
120 37 Trego, A.L. and 1968 270-313 The above specimen except strength of magnetic field is 28 kG. Mackintosh, A.R.	119	37	Trego, A.L. and Mackintosh, A.R.	1968		270-310		The above specimen, but measured after cooled through the Néel temperature in a longitudinal magnetic field of 40.5 kG; resistivity value calculated from reported $\Delta\rho/\rho(T_N)$, with $\rho(T_N)$ taken to be 12.70 x 10 ⁻⁸ Ωm .
	120	37	Trego, A.L. and Mackintosh, A.R.	1968		270-313		The above specimen except strength of magnetic field is 28 kG.

Data	Rof.			Method	Temp.	Non ine electron	
2 X	No.	AUCHOT (8)	lear	Used	Range, K	besignation	composition (weight percent), specifications and remarks
121	37	Trego, A.L. and Mackintosh, A.R.	1968		275-307		The above specimen except strength of magnetic field is 15.6 kG.
122	37	Trego, A.L. and Mackintosh, A.R	1968		285-310		The above specimen but cooled through the Néel temperature in a transverse magnetic field of 47 kG.
123	37	Trego, A.L. and Mackintosh, A.R.	1968		274-308		The above specimen except strength of magnetic field is 40.5 kG.
1-4	37	Trego, A.L. and Mackintosh, A.R.	1968		274-310		The above specimen except strength of magnetic field is 28 kG.
125	37	Trego, A.L. and Mackintosh, A.R.	1968		275-307		The above specimen except strength of magnetic field is 15.6 kG.
126	67	Akiba, C. and Mitsui, T.	1972	۲	294-320		99.997 pure; iodide chromium supplied by A.D. Mackay Inc.; 0.77 mm thick, 0.7 mm wide and 10 mm long; single crystal, spark cut and chemically polished; specimen axis within ± 3 degrees from the crystalline <100> direction; $R(293 K)/R(4, 2 K) = 630$ without magnetic field cooling; specimen in single magnetic domain state (single q) prepared by heating to 329 K, applying a longitudinal magnetic field of 74 kG, then cooled to 273 K, and magnetic field of 74 kG, then cooled to 273 K, and magnetic field volues state values calculated from reported resistance, and with $\rho(320 K)$ taken to be 12.906 x 10 ⁻⁶ Am.
127	67	Akiba, C. and Mitsui, T.	1972	۷	301-320		The above specimen except magnetically cooled with a transverse field of 74 kG.
128	67	Semenenko, E.E. and Tutov, V.I.	1969		1.5-6.8		Monocrystalline whisker specimen, $0.10-0.12$ mm in diam and $\circ 8$ mm long; $R(4,2 \text{ K})/R(300 \text{ K}) = 8 \times 10^{-3}$; resistivity values calculated from reported resistance and $\rho(300 \text{ K})$, taken to be $12.650 \times 10^{-6} \Omega \text{ m}$.
129	89	Semenenko, E.E. and Tutov, V.I.	1972		4.7-329		Primary impurity is iron; only resistance as a function of temperature reported; resistivity calculated by assuming $ ho(328.6~{ m K})$ = 13.177 x 10 8 G m.
130	68	Semenenko, E.E. and Tutov, V.I.	1972		280-330		The above specimen in the vicinity of the Néel temperature.
131	68 . 74	Semenenko, E.E. and Tutov, V.I. Semenenko, E.E.	1972 1966		4.4-16.1		Similar to the above; R(1.5 K)/R(300 K) = 8 x 10^{-3} ; resistivity values calculated from reported R/R(300 K) with $\rho(300$ K) taken to be 12.650 x 10^{-6} G.m.
132	68	Semenenko, E.E. and Tutov, V.I.	1972		1.7-14.8		Similar to the above; $R(1.5 \text{ K})/R(300 \text{ K}) = 7.6 \times 10^{-3}$.
133	68	Semenenko, E.E. and Tutov, V.I.	1972		2.0-7.1		Similar to the above; $R(1.5 \text{ K})/R(300 \text{ K}) = 6.8 \times 10^{-3}$.
Not	mode	in figure.					

Data Set No.	Ref.	Author (s)	Үеаг	Method Üsed	Temp. Range,K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
134	40	Kostina, T.I., Ekonomova, L.N., and Kondorskii, E.I.	1970		103-130		Single crystal cut by electric spark method; 0.1 mm thick, 0.15 mm wide and 4 mm long; R(293 K)/R(4.2 K) = 500; TN 311 \pm 2 K; longitudinal axis of sample parallel to the [110] direction; resistivity values calculated from reported R/R(77 K), with $\rho(77$ K) taken to be 0.737 x 10 ⁻⁸ Ωm.
135	40	Kostina, T.I., et al.	1970		285-326		The above specimen.
136	40	Kostina, T.I., et al.	1970		106-131		The above specimen after magnetically annealed by an external field in the [100] direction of magnitude 34 kOe.
137	40	Kostina, T.I., et al.	1970		103-119		Similar to the above except external field is in the [110] direction.
138	40	Kostina, T.I., et al.	1970		121-153		Similar to the specimen of data set 134, except longitudinal axis of sample is parallel to the [100] direction.
139	40	Kostina, T.I., et al.	1970		287-329		The above specimen.
140	40	Kostina, T.I., et al.	1970		101-125		The above specimen after magnetically annealed by an external field in the [100] direction of magnitude 34 kOe.
141	40	Kostina, T.I., et al.	1970		111-133		Similar to the above except magnetic field is in the [110] direction.
142	41	Muir, W.B. and Strön-Olsen, J.O.	1971		76-326		Single crystal, 1 mm thick, 1 mm wide and 7 mm long; cut by spark erosion technique from vapor transport grown polycrystal ingot containing many large single crystals, supplied by Battelle Memorial Institute; annealed at 1470 K in argon for 50 h; strain free (found by x-ray technique; specimen axis parallel to the <100° direction; R(300 K)/R(4,2 K) = 350; in single magnetic domain state by cooling from 343 to 273 K in a longtudinal magnetic field of 60 k0e; measuring current parallel to the spin density wave vector Q; resistivit) values calculated from reported R/R(320 K) with $\rho(320 K)$ taken to 12.906 x 10 ⁻⁶ Ω m.
143	41	Muir, W.B. and Ström-Olsen, J.O.	1971		76-328		The above specimen in the multidomain state.
144	41	Muir, W.B. and Ström-Olsen, J.O.	1791		296-320		The above specimen, single domain state, in the vicinity of the Néel temperature; measuring current parallel to Q.
145	14	Muir, W.B. and Ström-Olsen, J.O.	1791		298-318		The above specimen, in the multidomain state after the above measure- ment.
146	41	Muir, W.B. and Ströa-Olsen, J.O.	1971		300-319		The above specimen, magnetically cooled to the single domain state again after the above measurement; measuring current again parallel to Q.
Not	shown	in figure.					

ż

8 A. -

Set No.	Ref.	Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
147	41	Muir, W.B. and Ström-Olsen, J.O.	1971		295-312		The above specimen, in the multidomain state after the above measurement.
871	41	Muir, W.B. and Ström-Olsen, J.O.	1971		299-320		The above specimen, in single domain state after cooling from 343 to 273 K in a transverse magnetic field of 60 kOe; measuring current perpendicular to Q.
149	41	Muir, W.B. and Ström-Olsen, J.O.	1971		299-310		The above in the multidomain state.
150	69	Borovik, E.S. and Volotskaya, V.G.	1959		2.4-78		Vacuum distilled chromium; needle shaped; "0.35 mm across" and 8 mm long; "appear to be single crystal;" resistivity value calculated from reported $R/R(273 K)$, with $\rho(273 K)$ taken to be 11.687 x 10^{-6} Ω m.
151	0/	McWhan, D.B. and Rice, T.M.	1967		4.3-232	Sample 2	Battelle Iochrome; single crystal; R(298 K)/R(4.2 K) = 140; measured under a pressure of 26.5 kbar; AgCl used as pressure transmitting medium; resistivity values calculated from reported R/R(l atm. 298 K), with $p(l atm., 298$ K) taken to be 12.319 x 10 ⁻⁶ Ωm .
152	70	McWhan, D.B. and Rice, T.M.	1967		60-223	Sample 2	The above measured under a pressure of 45.7 kbar.
[53	70	McWhan, D.B. and Rice, T.M.	1967		32.5-223	Sample 2	The above measured under a pressure of 64.9 kbar; data points below 30 K cannot be resolved from graph, and are not reported here.
154	0/	McWhan, D.B. and Rice, T.M.	1967		188-276	Sample 2	From the same ingot as the above specimen; $R(298 K)/R(4.2 K) = 275$ and 165 before and after pressure experiment respectively; measured under a pressure of 26.3 kbar; AgCl used as pressure transmitting medium; resistivity values calculated by the same method as for the above specimen.
155	70	McWhan, D.B. and Rice, T.M.	1967		59-262	Sample 2	The above measured under a pressure of 45.9 kbar.
156	70	McWhan, D.B. and Rice, T.M.	1961		70-262	Sample 2	The above measured under a pressure of 65.9 kbar.
157	27	Suzuki, T.	1966		216-331		99.99 pure; electrolytic, supplied by Johnson and Matthey Co.; 0.5 mm thick, 0.5 mm wide and 20 mm long; degassed at 773 K; electropolished in a solution of 90% acetic acid and 10% perchloric acid; resistivity values calculated from reported $[\rho(T) - \rho(300 \text{ K})]/\rho(300 \text{ K})$, with $\rho(300 \text{ K})$ taken to be 12.650 x 10 ⁹ 0 m.
158	32	Ishikawa, Y., Ikeda, S., and Akiba, C.	1975		299-320		99.997 pure; fodide chromium from A.D. Mackay Inc.; single crystal, 0.7 mm thick, 0.7 mm wide and 10 mm long; specimen axis along [100] direction; resistivity value calculated from reported resistance values and $\rho(370 \text{ K})$, taken to be 12.906 x 10 ⁻⁸ Ω m.
Not	shown	in figure.					

* Not shown in figure.

value at Néel temperature not reported; measured with increasing temperature at ${}^{\rm AI}$ khr^1; resistivity values calculated from reported resistance ratios and an assumed $\rho(300.23~{\rm K})$ = 12.655 x 10⁻⁸ Ω m; because 0.3 0, <0.002 N and H each by chemical analysis; <0.03 Zn and <0.01 K by spectrographic analysis; polycrystalline specimen; 0.25 in. in diam and 1 in. long; annealed; resistivity values calculated from reported equations: $p = 0.1 + 1.58 \times 10^{-6} T^{3.02}$ for T < 109.5 K, and 310.79 K; resistivity value calculated from reported resistance ratio and an assumed $\rho(300.07 \text{ K}) = 12.651 \times 10^{-6} \Omega \text{ m}.$ 100 h, and water quenched; etched again in HCl to the suitable dimencooled in 24 h; "thermally cycled before measurement;" Ty determined by same method as above 310.77 K; resistivity values calculated from reported resistance ratio and an assumed $\rho(304.15 \text{ K}) = 12.733 \text{ x}$ Swaged rod supplied by P.H. Brace, Westinghouse Electric and Manufaca mai an<mark>harang sa</mark> na na na persebutuh dan tahun dan sebut da evacuated to about 0.1 Torr and encapsulated; annealed at 1250 K for sions; data reported as ratio of ρ to the ρ at the Néel temperature. Similar to the above except approximate dimensions 1 mm thick, 1 mm Similar to the above except approximate dimensions 1 mm thick, 1 mm turing Co., spectroscopic examination by Martin Graban show only a "doubtful trace of magnesium"; resistivity values calculated from reported R(T)/R(273 K) with $\rho(273 \text{ K})$ taken to be 11.687 x 10⁻⁶ Ω m. Specimen material same as for Data Set 100; approximate dimensions wide and 15 mm long, and annealed at 1250 K for 100 h and furnace-0.1 mm thick, 1 mm wide and 20 mm long; spark cut from arc-melted ingot, etched in HCl, placed in silica tube, flushed with helium, cooled in 12 h; T_N determined from a power law fit to $\rho^{-1} \propto d\rho/dT$ wide and 20 mm long, and annealed at 1250 K for 24 h and furnaceof graph reading difficulties, not all data points are included. Composition (weight percent), Specifications and Remarks x⁵ dx THE R. P. LEWIS CO., LANSING MICH. Designation Specimen Name and Cr (2) Cr(1) Cr (3) 300.2-315.0 300.1-313.5 304.2-313.4 Range, K 4-300 193-347 Temp. Method Used 4 × < < Year 1933 1978 1978 1978 1968 Rapp, Ö., Benediktsson, G., Clinard, F.W. and Rapp, Ö., et al. Rapp, Ö., et al. \uthor(s) Arajs, S., and Bridgman, P.W. Aström, H.U., Kempter, C.P. Rao, K.V. Ref. ź 7 31 31 72 31 Data 163* š 159 160 ź 161 162

Cr (continued) MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF CHROMIUM

TABLE 2.

í.

33

and

 $\rho = -1.08 + \left[\frac{C}{H0}\right] \times \left[\frac{T}{\theta}\right]^5 \sigma^{\theta/T} \frac{x^5 \, dx}{(e^x - 1)(1 - e^{-x})}, \text{ with } \theta = 357 \text{ K}$

 $C = 1.43 \times 10^{-6}$ (M = atomic weight).

CHROMIUM
0F
RESISTIVITY
ELECTRICAL
THE
NO
DATA
EXPER IMENTAL
TABLE 3.

Cr.

0.0

[Temperature, T, K; Electrical Resistivity, $\rho,~10^{-8}\,\Omega\,m]$

T	٩	ч	ď	н	٩	ч	d	÷	٩	F	٩
DATA	ser 1*	DATA	SET 6	DATA SET	6(cont.)	DATA SET	7(cont.)*	DATA SET	8(cont.)*	DATA SET	9(cont.)*
25.75	75.9	793	14.1	1753	112.8	1773	116.9	1793	120.7	1813	117.5
4.2	26.2	323	15.3	1763	113.8	1733	117.3	1803	121.1	1823	117.9
20.6	26.7	373	17.5	1773	114.7	1743	117.8	1813	121.6	1833	118.5
83	29.2	423	19.7	1783	115.8	1753	118.8	1823	122.0	1843	119.0
290	43.8	473	22.1	1793	117.0	1763	118.8	1833	122.5	1853	119.5
		523	24.5	1803	118.2	1773	119.3	1843	122.8	1863	120.1
DATA S	IET 2*	573	26.7	1813	119.3	1783	119.8	1853	123.3	1873	120.7
		623	29.4	1823	119.9	1793	120.3	1863	123.8	1883	121.3
2.20	26.5	673	32.0	1833	120.5	1803	120.7	1873	124.2	1893	122.0
3.01	26.6	723	34.8	1843	121.1	1813	121.2	1883	124.7	1903	122.7
4.2	26.7	773	37.6	1853	121.8	1823	121.7	1893	125.1	1913	123.5
20.6	27.0	823	40.4	1863	122.8	1833	122.1	1903	125.6	1923	124.3
83	28.8	873	43.3	1873	123.8	1843	122.6	1913	126.1	1933	125.2
290	43.8	923	46.1	1883	124.7	1853	123.0	1923	126.5	1943	126.0
		973	49.0	1893	125.6	1863	123.4	1933	126.8	1953	126.8
DATA S	1ET 3*	1023	51.8	1903	126.6	1873	123.8			1963	127.6
		1073	54.9	1913	127.5	1883	124.3	DATA S	SET 9*	1973	128.5
20.6	0.90	1123	58.5	1923	128.5	1893	124.7				
80	2.01	1173	61.8	1933	129.5	1903	125.2	1553	100.4	DATA S	ET 10*
292	17.2	1223	65.6	1943	130.5	1913	125.6	1563	101.4		
		1273	69.5	1953	131.5	1923	126.2	1573	102.4	1563	105.1
DATA	SET 4	1323	73.6	1963	132.5	1933	126.8	1583	103.3	1573	106.5
		1373	77.4	1973	133.5	1943	127.5	1593	104.3	1583	107.5
2.25	0.79	1423	81.8	1983	134.5	1953	128.2	1603	105.2	1593	108.5
4.2	0.79	1473	86.7	1993	135.7	1963	129.0	1613	106.2	1603	109.4
20.6	0.80	1523	91.4	2003	136.9	1973	129.9	1623	107.3	1613	110.4
80	2.01	1573	96.0	2013	138.2			1633	107.9	1623	111.2
293	17.2	1583	96.9	2023	139.5	DATA S	ET 8*	1643	108.5	1633	112.2
		1593	97.8	2033	140.9			1653	109.1	1643	112.6
DATA	SET S#	1603	98.7	2043	141.3	1643	109.0	1663	109.7	1653	113.1
		1613	9.66	2053	142.7	1654	110.3	1673	110.3	1663	113.6
373	17.501	1623	100.7	2063	144.1	1663	111.7	1683	110.9	1673	114.1
473	22.002	1633	101.6	2073	145.5	1673	112.9	1693	111.4	1683	114.9
573	26.702	1643	102.6			1683	114.2	1703	112.0	1693	115.4
673	32.000	1653	103.6	DATA S	ET 74	1693	115.6	1713	112.6	1703	115.9
873	43,290	1663	104.5			1703	116.5	1723	113.1	1713	116.4
973	48.996	1673	105.4	1643	108.3	1713	117.0	1733	113.6	1723	116.8
1073	55.006	1683	106.3	1653	109.5	1723	117.5	1743	114.1	1733	117.3
1173	61.805	1693	107.2	1663	110.7	1733	118.0	1753	114.6	1743	117.7
1273	69.493	1703	108.2	1673	111.8	1743	118.4	1763	115.1	1753	118.2
1373	77.519	1713	109.4	1683	112.9	1753	118.9	1773	115.6	1763	118.6
1473	86.730	1723	110.0	1693	9.011	1763	119.3	1783	116.0	1773	119.0
1573	95.969	1733	110.0	1703	114.9	1773	119.8	1793	116.5	1783	119.4
1673	105.374	1743	111.9	1713	115.9	1783	120.2	1803	116.9	1793	119.9
t Not abo	m in fiance										
	ישוחקיו זיו זיוער ווא										

T	٩	F	٩	Г	D	F	þ	L	J	L	d
DATA SET 1	0(cont.)*	DATA SET	12(cont.)	DATA SET	<u>17(cont.)</u>	DATA SE	T 19*	DATA SET	21(cont.)*	DATA S	ET 24*
1803	120.3	281.3	9.96	82.7	0.967	200	8.16	310.7	13.015	288.7	12.478
1013	12U.8	300. /	10.69	91.8	1.2/	204	8.51	511.4	12.964	6.767	12.024
1813	121.6	0.026 0.626	11 47	50T	1.95 7 86	210	8.80 a 37	312.5	12.950	200.4	12.812
1843	122.0	378.4	12.87	133	1.72	215	0.76	313.7	12.983	302.7	12.871
1853	122.5	402.6	13.12	160	5.26	233	10.21	319.5	13.167	304.6	12.900
1863	122.9	485.1	16.27	192	7.63	238	10.44	324.4	13.339	305.8	12.912
1873	123.3	509.4	16.76	214	8.49	243	10.72	328.2	13.465	306.9	12.912
1883	123.8	538.5	18.22	237	10.25	251	11.09			308.1	12.903
1893	124.2	577.3	19.67	271	12.05	262	11.65	DATA S	ET 22*	309.4	12.903
1903	124.7	630.6	21.86	293	12.65	268	11.98			310.1	12.897
1913	125.2	698.5	24.77	298	12.83	279	12.44	291.5	12.721	310.5	12.885
6261	125.6	771.3	27.69	305	12.97	287	12.72	295.2	12.825	310.7	12.864
1933	126.0	853.7	31.57	308	12.96*	294	12.93	299.1	12.922	310.9	12.800
1943	0.021 0.461	0.146	01.65	515	12.93	303	13.12	301.3	12.966	5.015	856.21
6641	1.011	111		114	C6.21	314	13.14	504.5	13.003	1.525	72. 22.
DATA SI	л ш*	VIVI	SET 13×	110	13-00*	321	13.30 13.47	1.905	13.024	1.826	13.134
		4.2	0.255	2		331	13.65	309.5	13.023	DATA SE	r 25*
87.3	0.56			DATA SE	T 18*	340	13.93	310.5	13.015		
145.9	3.26	DATA	SET 14*			346	14.14	310.7	13.003	295	14.5
165.4	4.25			200	8.05			311.6	12.909	308	15.6
277.7	9.66	4.2	0.181	204	8.33	DATA SET	r 20*	311.8	12.909	325	16.1
292.4	16.6			209	8.61			314.6	12.984	357	16.9
316.8	10.41	DATA	SET 15*	215	8.91	93.5	2.6	320.0	13.163	382	18.6
326.6	10.41			219	9.16	133.2	5.1	325.8	13.362	477	23.2
380.4	12.38	4.2	0.125	224	9.47	166.4	7.8	328.2	13.439	668	33.2
487.9	15.83			230	9.84	196.7	9.8			745	37.3
561.2	18.54	DATA	SET 16*	239	10.28	222.2	11.0	DATA S	ET 23*	810	40.6
654.0	22.24			242	10.51	252.5	13.0				
732.1	25.44	4.2	0.090	251	10.93	291.2	14.3	288.6	12.515	DATA SE	r 26
810.2	28.89	i		256	11.23	322.4	14.9	292.5	12.655		
000.9	30.01	VIVO	SET 1/	259	11.37	347.0	16.0	296.0	12.761	00	16.6
0.10K				267	11.79	367.8	16.9	298.6	12.824	489	24.0
1.0001	07.16	7.4	ccu.u	717	12.02	377.2	17.1	301.6	12.891	099	31.6
1049.4	12.04	11.8	0.056	278	12.26	389.5	17.6	303.1	12.918	868	39.2
1004.1	60.95	14.2	0.057	283	12.47			304.9	12.939	1069	47.1
		18.0	0.062	290	12.72	DATA SI	T 21*	305.5	12.945	1285	57.4
DATA	ET 12	21.6	0.065	310	13.23			306.7	12.945	1468	63.3
-	;	26.7	0.075	316	13.37	300.8	13.014	308.0	12.937	1527	70.8
67.19	67.0	29.7	0.085	321	13.54	301.9	13.033	309.8	12.937	1607	76.9
1.79	1.22	31.3	0.093	324	13.88	304.1	13.057	310.4	12.924	1628	73.9
140./	2.68	42.9	0.151	336	14.05	305.5	13.069	310.6	12.907	1708	81.9
170 5	04.C	4°70	0.264	939	14.16	307.2	13.069	311.0	12.827	1721	1.67
C. 711	00.4 00	600 1. 1.	0. 384 A 225	344	14.35	308.5	13.062	320.5	13.124	184/	85.4
2-1-4	70.0	t . t .	C00.U			309.9	13.03/	2.026	13.30/	1720	72.4

1.0

* Not shown in figure.

Cr (continued)
OF CHROMIUM
L RESISTIVITY
HE ELECTRICA
DATA UN 1
EXPERIMENTAL
TABLE 3.

-	م	F	d	1	٩	F	٩	H	đ	F	đ
DATA SET 2	6(cont.)	DATA SET 3	11(cont.)*	DATA SET 3	2(cont.)*	DATA SET	33(cont.)	DATA SET	34(cont.) *	DATA SET	35(cont.)*
2002	98.5	143	5.1	312	12.6	310.8	13.58*	307.9	13.86	311.5	13.23
2015	95.4	146	5.4	318	12.5	311.3	13.58*	309.1	13.83	313.2	13.28
2049	101.0	148	5.5	325	12.7	312.6	13.61*	310.0	13.79	314.9	13.35
2065	99.9	154	5.8 9	341	13.2	314.0	13.67*	310.6	13. / 2	316.8	13.42
2103	102.3	160	6.2	347	13.5	1.416	13.69 13.54	511.5	13.08	320.0	13.55
2103	7.011	181 184	0.4	166 071	13.8 14.2	1.016	13./5*	1.216	00.01	525.0	13.6/
2196	9.111	189	0	111	14.5	320.2	13.88*	317.2	13.86	127.65	11.84
		192	8.3		•	322.9	14.00*	320.2	13.97	329.5	13.93
DATA S	ET 27	208	9.4	DATA	SET 33	326.3	14.15*	322.3	14.06		k 1 1
		216	6.9			328.7	14.22*			DATA S	ET 36*
1673	80.3	219	9.9	242.9	11.49	330.8	14.35	DATA S	ET 35*		
2053	100.0	219	10.1	247.4	11.63*					243.0	11.34
2113	101.5	226	10.4	249.1	11.72*	DATA S	ET 34*	243.0	11.34	247.0	11.51
2113	108.1	242	11.4	250.8	11.81*			241.0	11.52	250.4	11.63
		253	12.2	251.9	11.84#	243.0	11.48	2.062	11.63	253.4	11.76
DATA SE	r 28*	259	12.3	254.8	11.95*	247.2	11.65	253.4	11.79	258.2	11.95
		261	12.5	258.4	12.10*	249.1	11.72	258.0	11.96	262.0	12.13
2013	132	277	13.0	260.8	12.20*	250.8	11.81	262.3	12.13	265.2	12.24
	;	281	13.2	264.4	12.36*	251.9	11.84	265.2	12.24	269.0	12.41
DATA S	ET 29	285	13.4	266.7	12.45*	254.6	11.95	269.3	12.42	274.2	12.55
		288	13.5	268.8	12.52*	258.2	12.12	273.9	12.55	278.6	12.70
1084	50.0	293	13.6	272.5	12.66	260.8	12.20	278.6	12.71	281.2	12.79
1292	59.1	294	13.6	272.1	12.74*	264.4	12.36	280.9	12.80	284.5	12.89
1501	68.9	297	13.7	276.3	13.83*	266.5	12.45	284.3	12.92	286.7	12.98
1702	79.6	302	13.9	278.8	12.95*	268.8	12.52	286.7	12.99	289.2	13.11
1161	89.5	307	13.9	279.7	12.97*	272.5	12.66	289.0	13.07	292.0	13.20
2051	97.1	310	13.9	281.4	13.03*	273.9	12.74	292.0	13.16	294.1	13.26
2136	102.5	315	13.8	283.1	13.11*	276.3	12.83	293.9	13.21	296.2	13.31
2152	108.7	325	14.0	285.8	13.22*	278.8	12.94	295.4	13.25	297.9	13.32
2214	112.5	334	14.2	289.0	13.34 *	279.7	12.97	296.9	13.26	299.0	13.34
2261	115.6	337	14.5	290.9	13.40*	281.1	13.04	298.1	13.28	300.2	13.35
		357	15.1	291.8	13.44*	283.0	13.11	299.2	13.30	301.1	13.32
DATA SI	1 30*	379	16.0	292.6	13.46	285.8	13.22	300.3	13.28	302.2	13.32
	0 00 F	401	17.0	296.2	13.60*	288.8	13.32	301.3	13.28	303.0	13.30
19/J	8.021			299.6	13.72*	290.5	13.40	101.9	13.26	303.9	13.27
		DATA	ET 32*	105	13.//*	R-167	13.44	0.5U5	13.23	304.7	13.22
C VIVO	11 21-	715		4.202	13./9#	9.262	13.40	4.505 0.505	13.20	304.7	13.18
ģ	•	C/7	9.11	303.8	-79.CI	2.062	13.01	505.9	13.14	1.00	13.12
8, 5,	1./	282	11.8	305.3	13.83*	299.2	13.73	304.3	13.09	306.0	13.11
102	2.0	285	12.1	306.2	13.83*	300.9	13.78	304.7	13.07	306.8	13.12
108	3.2	291	12.3	307.0	13.80*	302.1	13.82	305.1	13.03	308.5	13.21
114	3.6	293	12.3	308.3	13.78*	303.6	13.86	306.0	13.04	310.2	13.28
121	4.1	298	12.3	309.6	13.75*	304.9	13.86	307.0	13.06	313.0	13.37
127	4.3	301	12.5	310.0	13.68*	306.2	13.88	308.5	13.12	317.2	13.54
133	4.6	306	12.6	310.6	13.63*	307.2	13.86	310.2	13.18	321.0	13.68
										326.3	13.87
* Not sho	wn in figure.										

36

12.2.70 10.30 10.44 10.55 10.55 10.60 10.73 10.75 10.60 10.60 10.60 10.60 10.60 10.60 10.60 10.60 10.60 10.60 10.60 10.60 10.95 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10 43* a 42* SET SET DATA DATA 243.0 2552.1 2552.1 2552.1 2552.1 2552.1 2555.1 2555.1 2555.1 2555.1 2555.1 2555.1 2255.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 2273.1 227 320.6 323.0 325.1 243.0 247.5 251.5 255.7 255.7 259.5 259.5 259.5 H 40(cont.)* 10.78 10.82 10.82 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 11.15 12.38 12.48 12.66 12.66 12.78 12.89 13.00 13.08 41* a SET DATA SET DATA 243.0 243.0 2246.5 2246.5 2246.5 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255.0 2255 310.0 312.1 316.2 316.2 316.9 321.1 321.1 323.6 н DATA SET 39(cont.)* 12.74 12.85 12.85 12.90 13.00 13.23 13.23 13.39 13.49 13.49 10.80 10.80 10.80 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10 ٩ 40* SET DATA 311.7 314.3 316.0 316.0 318.3 321.1 321.1 322.9 322.4 332.6 330.0 ы DATA SET 38(cont.)* 13.18 13.31 13.49 13.63 11.68 11.75 11.75 11.90 11.90 12.03 12.14 12.26 12.28 12.31 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.25 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 11.02 11.44 11.61 12.37 39* ٩ SET DATA 317.2 321.0 325.1 329.1 243.0 2246.4 2246.4 2246.4 2251.3 2254.2 2254.2 2266.1 2266.1 2266.1 2266.1 2266.1 2266.1 2266.1 2266.1 2275.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 2277.0 200 H DATA SET 37(cont.)* 11.24 11.56 11.56 11.56 11.57 11.56 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 11.23 13.25 13.30 13.37 13.50 13.59 13.68 12.75 12.70 12.65 12.65 12.60 12.69 12.74 12.74 12.99 38# ٩ SET DATA 242.8 242.8 2251.0 2251.0 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255.9 2255 320.8 322.7 324.2 324.2 327.2 329.3 331.4 H $\begin{array}{c} 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\$ a DATA SET 37* 242.8 251.0 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.4 2551.3 2551.3 2551.4 2551.4 2551.4 2551.4 2551.4 2551.4 2551.3 2551.4 2551.4 2551.3 2551.4 2551.3 2551.4 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2555.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2551.3 2555 315.5 319.6 113. H

Not shown in figure.

(continued)
Сr
CHROMIUM
OF
RESISTIVITY
ELECTRICAL
THE
NO
DATA
EXPERIMENTAL
TABLE 3.

-	٩	÷	đ	F	٩	T	٩	÷	a	ц	٩
DATA SET	43(cont.)*	DATA SET	i5(cont.)*	DATA SET	46(cont.)	DATA SET	49(cont.)*	DATA S	ET 52#	DATA SET 5.	(cont.)*
264.0	10.76	1372	101.2	307.4	13.20*	311.9	12.901	306.9	12.812	311.86	12.642
264.9	10.76	1447	113.0	308.2	13.31*	313.6	12.895	307.1	12.800	311.98	12.643
265.9	10.74	1531	112.7	309.9	13.40*	315.0	12.911	307.9	12.807	312.10	12.645
267.0	10.74	1605	119.1	313.4	13.52*	316.5	12.953	310.1	12.786	312.21	12.646
268.0	10.72	1669	119.1			320.4	13.078	311.4	12.777	312.33	12.651
269.3	10.69	1724	140.9	DATA S	SET 47*			312.9	12.774	312.92	12.665
270.2	10.64	1869	140.6			DATA	SET 50	313.6	12.774	313.70	12.689
270.4	10.60	1919	140.6	80	1.060			314.8	12.790	314.41	12.710
270.8	10.54	1976	148.6	90	1.445	80	0.860	316.4	12.811	315.29	12.736
271.0	10.49			100	1.860	90	1.225	320.3	12.945	316.01	12.759
271.9	10.50	DATA	SET 46	120	2.860	100	1.630			317.07	12.793
272.5	10.53			140	4.050	120	2.605	DATA S	ET 53*	317.78	12.814
274.0	10.58	5.1	0.20	160	5.295	140	3.760			318.38	12.835
275.0	10.62	79.6	1.03	180	6.575	160	5.000	300.00	12.619	318.91	12.850
277.6	10.69	89.0	1.26	200	7.830	180	6.315	300.71	12.637	319.15	12.859
280.1	10.80	94.1	1.47	220	9.100	200	7.545	301.54	12.655		
282.7	10.88	100.9	1.76	240	10.300	220	8.790	302.37	12.671	DATA SE	:T 54*
286.3	11.01	107.8	2.08*	260	11.385	240	10.015	303.02	12.683		
291.4	11.20	112.0	2.32*	280	12.270	260	11.095	303.73	12.698	300.95	12.698
293.5	11.30	116.3	2.58*	300	12.880	280	12.030	304.91	12.719	304.74	12.762
298.2	11.46	125.7	3.17	304	12.946	300	12.710*	305.50	12.728	308.52	12.794
301.3	11.57	132.5	3 27*	306	12.961	304	12.792*	305.97	12.733	310.99	12.762
303.3	11.63	147.8	4.55	308	12.958	306	12.813	306.45	12.738	312.22	12.672
306.3	11.85	157.2	5.28*	310	12.931	308	12.816*	307.04	12.743	314.05	12.720
312.2	12.03	167.4	6.01	312	12.900	310	12 791	307.51	12.747	317.79	12.835
316.2	12.18	180.2	6.80	314	12.898	312	12.772*	308.10	12.751		
321.5	12.42	190.4	7.54*	316	12.940	314	12.780*	308.45	12.751	DATA SE	IT 55*
325.9	12.64	198.1	8.65*	320	13.080	316	12.808*	308.69	12.752		
		199.0	8.09*	340	13.765	320	12.925*	308.98	12.753	301.04	12.692
DATA S	ET 44	206.6	8.97	360	14.470	340	13.605	309.10	12.753		
		211.8	8.94*	380	15.200	360	14.340	309.34	12.753	DATA SF	:T 56*
1124	46.2	210.0	9.18*	400	15.935	380	15.085	309.57	12.752		
1206	54.7	218.6	9.62*			400	15.845	309.69	12.751	301.28	12.703
1276	61.1	223.7	9.65	DATA S	ET 48*			309.93	12.749	301.16	12.704
1379	72.1	233.9	10.35*		1	DATA S	ET 51*	310.05	12.748	304.91	12.766
1466	90.2	245.9	11.03*	310.4	12.937			310.16	12.746	308.79	12.795
1605	95.3	257.8	11.67	311.8	12.880	307.9	12.788	310.40	12.743	311.27	12.740
1761	112.5	268.0	12.26*	312.6	12.853	310.3	12.795	310.52	12.740	312.63	12.678
1938	166.3	278.3	12.76*	313.1	12.847	311.2	12.762	310.63	12.735	314.27	12.728
		286.8	13.11	313.8	12.871	311.8	12.722	310.87	12.725	317.96	12.844
DATA SL	T 45*	291.9	13.28*	314.6	12.896	312.9	12.716	311.16	12.696		
		297.1	13.37*			314.6	12.759	311.45	12.662	DATA SE	T 57*
1120	68.6	297.9	13.37*	DATA S	ter 49*	316.9	12.805	311.57	12.648		
1160	72.4	300.5	13.34			317.9	12.851	311.57	12.645	301.28	12.699
1239	80.9	303.1	13.31*	306.6	12.961	320.5	12.945	311.68	12.644		
1284	95.7	304.8	13.28*	309.5	12.937			311.74	12.643		

* Not shown in figure.

70(cont.)* 12.920 12.920 12.909 12.906 12.906 12.938 12.889 12.889 12.889 12.889 12.887 12.887 12.887 12.887 12.887 12.887 12.887 12.887 12.887 12.887 12.887 12.887 12.887 12.887 12.897 12.9977 12.9977 12.9977 12.9977 12.9977 12.9977 12.9977 12.9977 1 Q. SET 71* SET DATA 311.8 312.0 312.1 312.1 312.3 312.5 312.6 312.7 312.9 313.0 313.3 313.6 313.3 313.8 314.0 314.3 314.7 314.7 315.4 315.6 315.9 315.9 316.6 316.6 100.0 102.6 104.9 107.6 109.2 110.2 111.3 1112.2 1113.9 1113.9 1113.9 1113.9 1113.9 1113.9 116.5 312.0 317.8 317.5 н DATA 317. 69(cont.) 12.859 12.868 12.875 12.875 12.892 12.892 12.900 12.937 12.937 12.960 12.888 12.900 12.957 12.957 12.957 12.957 12.956 12.9799 12.9799 12.9799 12.9799 12.9799 12.9799 12.9799 12.9799 12.9799 ٩ SET 70* DATA SET DATA 313.4 313.6 313.6 314.4 314.6 314.6 315.1 315.6 315.3 300.3 301.2 301.2 301.2 302.9 306.5 307.5 H 12.899 DATA SET 68(cont. 12.30 12.44 12.5.75 12.75 12.80 12.85 12.75 12.7 SET 69* đ DATA [H 53.64 56.88 60.41 63.07 65.72 2.51 19.70 20.11 20.11 20.16 21.12 21.12 21.10 21.02 21.02 21.07 21.07 21.13 21.17 21.26 0.36 1.83 2.57 2.57 2.57 2.57 2.57 2.21.93 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.22.57 2.2 DATA SET 65(cont. 23.21 12.07 23.11 67* DATA SET 68 đ **66** SET SET DATA DATA 78.9 273.2 279.1 279.1 283.6 294.5 301.1 309.6 311.8 313.9 315.1 316.5 317.5 319.1 278.4 20.8 77.7 90.1 192.3 273.2 273.2 273.2 273.2 273.2 273.2 273.2 205.4 205.4 300.4 300.4 310.2 310.6 319.6 319.6 325.0 327.8 373.2 1123 1175 1175 1224 1273 1319 н 12.630 12.680 12.680 12.841 12.841 12.841 12.845 12.845 12.845 12.845 12.855 12.773 12 15.25 16.14 16.14 24.13 30.92 35.94 44.20 55.71 21.47 39.48 44.79 ٩ SET 63* SET 64 SET 65 DATA DATA DATA 299.7 299.4 2006.4 2006.4 2006.4 2006.4 2006.4 2007.7 200. н 371 391 484 484 579 726 824 873 873 976 976 1077 518 875 968 12.710 12.712 12.709 12.709 12.704 12.704 12.704 12.704 12.685 12.736 12.718 12.720 12.720 12.770 12.776 12.776 12.699 12.699 12.752 12.867 12.853 12.714 12.88 13.19 17.92 17.92 221.17 221.17 221.17 221.17 321.17 321.17 332.85 226.49 226.49 226.49 227.97 277.97 DATA SET 59* DATA SET 60* DATA SET 61* a SET 58* DATA SET 62 302.10 DATA 301.43 301.54 301.56 305.21 305.21 305.11 311.51 312.81 314.59 318.32 301.98 302.10 302.21 305.91 305.62 309.62 311.99 313.39 315.09 318.72 H 293 325 432 432 475 475 636 636 677 777 777 777 777 890 890 800

39

Not shown in figure.

(continued)
ភ
CHROMIUM
9
RESISTIVITY
ELECTRICAL
N THE
õ
DATA
EXPERIMENTAL
ъ.
TABLE

F	٩	F	٩	L	م	E-	d	H	d	T	d
DATA SET 7	I(cont.)*	DATA SET	72(cont.)*	DATA SET	74(cont.)*	DATA SET	'5(cont.)*	DATA SET	76(cont.)*	DATA SET	77(cont.)*
118.6	2.66	122.3	3.012	108.7	2.186	120.7	2.766	126.1	3.020	123.6	2.888
119.3	2.70	122.8	3.025	110.8	2.270	121.3	2.783	126.7	3.074	123.8	2.897
120.2	2.75	123.8	3.058	112.7	2.362	121.3	208.2	121 6	3.1/2 240	124.2	2.918
121.6	2.84	125.3	1.160	114.7	2.452	121.8	2.831	135.3	3.590		
122.0	2.86	126.2	3.208	116.2	2.535	122.4	2.860	136.4	3.655	DATA S	ET 78*
122.6	2.87	129.0	3.387	117.3	2.587	123.3	2.901	137.6	3.742		
123.1	2.89	129.6	3.417	119.1	2.668	124.0	2.940	140.4	3.919	281.7	11.93
123.6	2.90	130.8	3.500	120.2	2.741	124.6	2.969			292.3	12.27
123.9	2.92	131.6	3.546	120.5	2.765	124.9	2.987	DATA S	ET 77*	298.7	12.45
124.4	2.95	132.5	3.616	121.3	2.784					302.0	12.52
125.2	3.00 	133.5	3.672	121.7	2.834	DATA S	ET 76*	117.4	2.557	305.4	12.59
8.C21		0.001	10/.C	0.221	400.7 700 C	100 8	1 817	117 7	2.203	1.100	12 61
127.8	3.15	136.9	410.0	124.1	2.956	101.7	1.848	117.7	2.572	308.4	12.57
129.4	3.25	138.0	4.000	125.0	2.983	102.7	1.889	118.1	2.587	309.4	12.57
130.1	3.29	139.1	4.080	125.8	3.036	104.1	1.944	118.2	2.593	311.0	12.57
131.8	3.40	140.3	4.171	126.5	3.084	105.1	1.987	118.4	2.607	311.4	12.51
132.8	3.46			127.4	3.133	105.9	2.014	118.6	2.613	311.6	12.47
133.7	3.52	DATA S	ET 73*	128.5	3.197	106.6	2.050	118.7	2.621	311.7	12.44
135.1	3.60		1	129.8	3.298	107.4	2.077	119.1	2.642	312.5	12.42
135.8	3.66	116.3	2.669	131.4	3.403	108.0	2.110	119.2	2.650	313.3	12.44
136.9	3.74	116.8	2.699	133.3	3.504	108.7	2.138	119.5	2.662	314.2	12.47
138.3	3.82	117.3	2.722	135.4	3.665	109.3	2.162	119.6	2.673	315.5	12.52
138.8	3.87	118.2	2.770	137.7	3.825	110.3	2.200	119.8	2.678	318.0	12.59
140.1	3.95	118.9	2.810	139.5	3.965	111.1	2.240	119.9	2.684	319.9	12.65
141.7	4.07	119.3	2.834	140.4	4.028	112.0	2.280	120.0	2.692	328.7	12.93
144.5	4.25	119.9	2.876			112.5	2.305	120.1	2.699	i	
		120.3	2.909	DATA S	ET 75*	113.1	2.336	120.3	2.705	DATA	SET 79
DATA SE	1 72×	120.8	2.928			113.5	2.357	120.5	2.717		
0.000		121.3	2.943	116.2	2.531	114.2	2.383	120.6	2.724	2.39	0.147
100.8	1.9/6	1.121	2.961	0./11	2.576	114.6	2.410	1.021	0//.7	3.03	0.135
105.01		2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 004	4./11 117 0	2,290	9.CTT	CC#.1	121.7	611.2 877 c	4.00	0.144
108.0	2.280	122.7	3.020	118.2	2.634	117.8	2.565	121.3	2.785	5.38	0.135
111.5	2.440	123.4	3.050	118.5	2.652	118.6	2.611	121.4	2.791	5.49	0.153
113.2	2.520	123.9	3.083	118.9	2.673	119.6	2.670	121.6	2.803	9.74	0.147
114.2	2.558			119.4	2.695	120.6	2.724	121.7	2.815	10.8	0.153
115.3	2.608	DATA S	ET 74*	119.6	2.708	121.2	2.742	121.8	2.820	18.7	0.166
116.2	2.670			119.8	2.722	121.7	2.780	121.9	2.820	21.1	0.159
117.1	2.716	100.8	1.775	119.9	2.741	122.4	2.812	122.1	2.822	27.8	0.173
118.5	2.769	101.8	1.891	120.0	2.741	122.4	2.855	122.1	2.825	43.8	0.224
119.7	2.854	102.6	1.924	120.2	2.742	123.1	2.868	122.5	2.836	53.4	0.357
121.0	2.910	104.0	1.976	120.3	2.743	123.8	2.900	122.9	2.858	63.8	0.474
121.4	2.948	105.7	2.046	120.4	2.745	124.8	2.946	123.1	2.868	66.4	0.604
0.121	2.995	7. JUL	2.110	120.5	2.741	125.4	2.986	123.4	2.877	10.5	0.941

* Not shown in figure.

.

Ì

1	T DATA SET 180	p 81(cont.)* 6.830	T Data Set 1764	p 82(cont.) 82.6	T DATA SE 1469	p 1 86* 70.7	T DATA SET	p 90(cont.)* 11.54	T DATA SET 311.0	p 91(cont.)* 13.98
190		7.480	1829	84.4 2	1520	74.0	244.3	11.78	313.9	14.05
210		8.13U 8.805	1900	89.2	1570	4.17	254.6	12.31	323.0	14.33
220		9.460	6661	93.1	1603	79.2	259.3	12.48		
230		10.125	1967	97.1	1633	81.3	265.9	12.80	DATA	SET 92
760		227.01 222.11	E/6T	5.94	1693	1.08	9.692	66.2T	106 7	0, 0
260		C7C.11	0.4 T.A	cet 83	DATA C	tr 074	0.010	13 33	203 2	9 77*
270		12.385	UTUM	0 140		10 11	284.6	13.48	207.9	*96.6
280		12.840	391	12.8	285.4	14.16	290.3	13.62	215.3	10.33*
290		13.230	498	16.3	289.1	14.27	295.0	13.67	224.7	10.93*
300		13.480	595	20.1	292.9	14.38	300.7	13.74	228.4	11.13
310		13.560	692	24.7	298.3	14.47	305.4	13.84	232.1	11.34*
320		13.745	800	29.3	303.4	14.52	308.2	13.87	239.6	11.68*
330		14.110	967	36.9	308.6	14.47	310.1	13.89	243.4	11.88*
340		14.460	1075	42.4	311.6	14.40	312.0	13.94	248.0	12.14*
350		14.830	1092	43.2	313.5	14.40	315.8	13.99	255.5	12.43*
360		15.190	1231	51.6	318.7	14.56	319.6	14.13	259.3	12.60*
			1371	60.6	323.6	14.77	325.2	14.33	262.1	12.72
DATA SI	5	ET 82	1469	66.1			330.8	14.47	265.9	12.87*
066			1564	71.6	DATA S	ET 88*	334.6	14.67	273.5	13.23*
000 14		15.6	1750		0 186	16 40	346.8	15,06	280.9	13.43*
474		17.6	1850	90.0	288.2	16.56	350.5	15.27	286.5	13.57*
571		21.3	1905	97.3	293.1	16.70	358.1	15.47	289.3	13.67*
661		24.7			298.3	16.79	363.7	15.76	295.0	13.79*
151		29.1	DATA S	SET 84	303.5	16.74	369.3	15.93	299.7	13.84*
765		29.9			308.6	16.53	375.9	16.19	304.5	13.84
835		33.1	1272	58.1	313.5	16.63	381.5	16.39	307.3	13.79*
849		33.8	1325	61.4	318.7	16.83	388.1	16.70	310.2	13.70*
126		37.3	1387	65.3	323.6	17.06	393.7	16.83	312.1	13,75*
939		37.9	1443	69.1			397.5	17.07	313.0	13.79*
1025		42.6	1498	72.5	DATA S	ET 89*	405.9	17.33	315.8	13,84*
1047		43.2	1560	76.5			411.5	17.60	320.5	13.99*
1165		49.5	1614	8.67	11	0.8	414.4	17.70	325.2	14.13*
1264		55.6	1664	83.0					335.6	14.47*
1275		56.2	1704	85.5	DATA S	ET 90*	DATA S	ET 91*	337.5	14.50*
1360		61.5	1724	86.7					137.5	14.52*
1402		63.9			198.5	9.48	283.0	13.51	338.4	14.62*
1460		67.5	DATA S	ET 85*	207.9	9.89	287.9	13.63	341.2	14.72*
1510		70.3			214.4	10.21	292.3	13.71	343.1	14.77*
1542		71.9	1482	71.4	218.1	10.50	298.0	13.79	348.7	14.96
1574		73.7	1511	73.5	224.7	10.69	303.7	13.87	358.1	15.37*
1652		17.4	1651	82.4	230.3	11.00	305.7	13.91	9.512	16.07
1740		80.8	1682	84.3	234.0	11.30	308.6	13.93	383.4	16.29*
	- {		1740	87.9						

41

* Not shown in figure.

ļ

F	٩	H	٩	H	٩	F	σ	T	a	ц	d
DATA SET 9	12(cont.)	DATA SET 5)5(cont.)*	DATA SET 9	9(cont.)*	DATA SET 9	9(cont.)*	DATA SET	100(cont.)	DATA SET 10	2(cont.)*
400.3	17.04	310.1	12.40	56.0	1.26	300.1	12.86	204	8.20	123.6	3.22
405.0	17.24*	310.4	12.38	59.4 66.4	1.32	301.4	12.88	216	9.02* 0 60*	132.1	3.65
406.7	17 77#	0.01C	12.30 85 11	100.4	1.63	10200	12 90	111	10.39*	157 6	4.00
424.7	18.13	311.7	12.39	78.7	1.85	305.2	12.91	248	11.01	174.6	5.79
		312.3	12.40	79.8	1.90	306.0	12.92	260	11.69*	183.1	6.64
DATA S	*C6 13	312.7	12.41	89.2	2.26	306.9	12.92	271	12.26*	191.6	7.50
		313.0	12.41	101	2.76	308.2	12.92	282	12.77	204.4	8.14
283.8	13.57	313.6	12.44	110	3.23	309.0	12.91	291	13.05*	217.2	00.6
288.1	13.68	314.8	12.47	114	3.40	209.5	12.88	297	13.24*	225.7	9.64
293.3	13.79	316.1	12.50	133	4.47	209.8	12.85			238.4	10.28
296.3	13.84	318.5	12.58	136	4.64	309.9	12.80	DATA	ET 101	251.2	10.93
1.162	13.80	8.126	89.2T	143	8	1.010	9/.21			1.402	/c.11
	20.C1	0.020 7 7 7 5	17.06	151	07.0 07 3	1115	12./4	4 105	12 21	5 086	12.21
4.900	13.75	C • 170	77.74	151	5 60	1111	12.76	302.5		208.0	13 07
307.4	13.70	DATA SI	ET 96#	156	5.84	311.9	12.67	304.3	13.36	107.3	13.28
308.8	13.80			163	6.23	314.1	12.73	305.3	13.37	306.3	13.07
309.8	13.73	312.22	12.45	168	6.57	316.1	12.80	306.3	13.38	319.4	13.07
310.7	13.79		•	173	6.84	319.7	12.93	307.7	13.38	327.9	13.50
313.6	13.89	DATA	SET 97*	179	7.17	325.0	13.13	308.6	13.38	336.4	13.93
318.0	13.98			184	7.45	330.1	13.30	309.6	13.37	349.2	14.14
323.2	14.15	78	1.635	189	7.78			310.2	13.36	349.2	14.36
i			4	195	8.11	DATA	SET 100	311.0	13.34	362.0	14.79
DATA S	**6 L3	DATA	ET 98*	200	8.41			311.3	13.31	374.8	15.22
				205	8.69	4	0.0811	311.9	13.29	387.5	15.64
297.4	12.64	77.6	1.77	211	9.02	23	0.0811	312.2	13.27	400.3	16.07
305.3	12.78	85.9	2.10	217	9.35	40	0.16	313.0	13.27	417.4	16.72
1.95	c/ . 71	5.26	2.51	222	9.62	51	0.25	313.4	13.28	434.4	17.36
2.705 2.905	12.72	106.3	10.5	227	9.90	3 3	0.41	314.2	13.30	451.5	17.79
	07.11	0.011		233 232	10.23	6	80°0	6.CTC	55.61 57 51	400.0	10.01
9.00	12.58	0.611	2 C	467 440	10.01	4 C	c/ . n	9./1C	13.40	7.104	00.61
310.3	12.49	127.2	4.06	249	00 11	8	1.22	0.110	14.01	1.115	20.70
311.4	12.54	130.5	4.28	254	11.25	93	1.47	DATA SI	ET 102*	540.9	22.08
312.4	12.57	140.4	4.83	259	11.47	66	1.72			562.2	22.93
313.5	12.57			265	11.72	106	2.04	8.5	0.21	592.0	24.43
314.5	12.62	DATA S	ET 994	271	11.94	114	2.54	21.3	0.21	604.7	25.29
				276	12.19	126	3.18*	34.1	0.21	630.3	26.36
IS VIV	CL 95*	4.19	1.04	282	12.39	134	3.67*	46.9	0.22	664.3	27.86
		10.3	1.04	290	12.61	139	3.97	64.0	0.43	685.6	28.93
9.606	12.21	17.0	1.02	293	12.69	148	4.52*	68.2	0.65	719.7	30.43
8.605	12.52	24.2	1.03	295	12.72	159	5.21*	85.3	1.08	749.5	31.93
2.00 B	12 K7	33.2 61 0	90°T	2.962	12.82	1/1	5.98	93.8	1.50	18/.8	33.86
110.1	12.45	41.0	1.15	270.2	12.84	101	6.69 7 2.7	100.0	1.93	813.5 477 A	12.2E
		••••	~	477.4	14.00	176			00.14		1.47

42

and the second second

er statel still in the second des

* Not shown in figure.

.

ont inued)
ir C
5
CHROMIUM
OF
RESISTIVITY
ELECTRICAL
THE
NO
DATA
EXPERIMENTAL
ч.
TABLE

T p	DATA SET 112	5.9 12.366	9.9 12.430	4.7 12.506	6.2 12.518	7.7 12.531	8.8 12.531	9.9 12.506	1.0 12.381	2.5 12.381	2.9 12.406	4.0 12.431	5.1 12.482	5.8 12.482	7.0 12.507	8.1 12.558	2.5 12.709	7.7 12.860	2.8 31.037	8.0 13.239	3.5 13.403	4.3 13.491		DATA SET 113		7.0 12.152	9.2 12.215	1.8 12.290	5.1 12.391	9.2 12.480	4.3 12.581	5.5 12.606	6.9 12.619	7.7 12.619	8.8 12.607	9.2 12.594	9.9 12.582	0.6 12.557	0.7 12.481	1.4 12.481	2.1 12.481	2.5 12.507	2 9 12 512	A.0 12.544	4.0 4 4. 7 1.7 5.87			cca.21 6.0
م	ont.)*	.91 29.	.91 29	.79 30	.92 30	.17 30	.30 06.	.42 30	.68 31	.81 31:	.06 31:	31/	31	31	.4 31	.2 31	.0 32:	.8 32	.6 33:	.4 33(.231 343	.124 34/	.079	.0960	.175	.316 28	.519 28	.784 29	.111 29	.500 29	30	11* 30	30	.38 30	.42 30	.81 30	.25 30	.69 31(.96 31	.35 31	.39 31	. 36	.16	19	10.			170
Т	DATA SET 109(c	311.5 12	315.3 12	320.4 12	328.1 12	330.6 13	335.7 13	339.5 13	347.2 13	351.0 13	356.1 14		DATA SET 11		300 14	400 19	500 24	600 28	700 33	800 38	900 43	1000 48	1100 53	1200 58	1300 63	1400 68	1500 73	1600 78	1700 84	1800 89		DATA SET 1		89.4 1	110.0 2	134.5 3	172.2 6	204.0 8	240.0 10	266.3 12	290.7 13	316.9 13	227 6 16	367 6 15	100 C 16	01 (.766		
φ	107(cont.)*	13.86	13.86	13.99	14.25	14.44		SET 108*		2.01	2.28	2.98	3.50	4.47	6.93	8.59	10.43	11.49	12.80	13.07	13.24	13.51	13.50	13.50	13.68	13.94	14.29		SET 109*		5.44	5.82	6.58	7.33	8.09	8.60	9.23	9.87	10.62	11.13	11.51	12.15	10 27	13 40	17 25	C0.21	12.00	12.91
Т	DATA SET	318.3	319.6	320.2	327.3	332.5		DATA		100.0	105.2	122.8	135.0	145.6	182.4	208.7	238.5	254.3	278.9	285.9	294.7	301.7	308.7	319.2	324.5	329.8	338.5		DATA		164.8	168.6	181.3	194.1	204.3	214.5	224.7	237.4	248.9	260.4	270.6	280.8	0.007 7 190	1.102	1 206	1.042	7.105	9./06
٩	106(cont.)	39.30	45.38	47.41	51.21	55.51	62.86	65.64	70.96	77.04	81.85	83.62	85.90	86.91	88.68	90.46	93.24	94.00	94.51	95.52		ET 107*	1	12.77	13.41	13.54	13.67	13.60	13.73	13.73	13.80	13.80	13.86	13.86	13.86	13.93	13.86	13.86	13.93	13.86	13.86	11.86	11 74	71.11	71. CT	4/ · CT	13.80	13.86
T	DATA SET	850.4	944.8	982.7	1046	1121	1235	1270	1354	1449	1524	1543	1575	1587	1612	1637	1675	1688	1700	1707		DATA S		273.2	288.0	291.2	292.5	294.4	294.4	296.4	298.3	300.2	301.5	302.8	304.1	304.7	306.0	307.3	308.0	309.2	311.2	312.5	312 5	1 211	1.110	0.010	1.010	316.4
d	04(cont.)*	13.81	13.71	13.71	13.52	13.71	14.37	15.12	1	ET 105*		0.10	0.83	12.49		ET 106		1.29*	2.05	2.81*	4.07	\$.09 *	6.35	7.36	8.38*	9.14	*06.6	10.66	11.16*	12.18*	12.68*	13.19	13.70*	14.20*	13.70	14.21*	14.46	14.97*	15.73	16.49	17,00#	17.51	18 77	76.35	11.11	00.02	50.45	c/.cc
T	DATA SET 1	303.8	307.7	310.6	313.5	318.4	335.8	359.1		DATA SI		20	11	273		DATA SI		93.5	112.5	125.1	150.3	162.9	169.1	194.3	213.2	219.5	225.8	244.8	251.0	269.9	276.2	295.2	301.4	307.7	307.8	326.8	4.055	345.7	364.6	389.9	196.2	415.2	C	1.042	1.001	0'010	0/3.0	181.0
d	02(cont.)	38.57	40.71	42.00	43.71	45.00	46.71		ET 103		13.00*	14.52	18.15	22.38	26.31	29.93	33.85	37.17	42.00	46.82	51.04	54.96	57.97	60.39		ET 104*		1.04	1.13	1.32	1.70	2.46	3.59	4.63	5.96	7.09	8.23	9.93	10.98	11.83	12.20	12.68	12.96	13.24			70.61	12.11
F	DATA SET 1	885.7	915.5	949.6	979.4	1004.9	1034.7		DATA SI		298.6	368.6	460.7	560.0	641.0	722.0	795.5	861.8	953.7	1042.0	9.1111	1181.8	1236.9	1281.1		DATA SI		76.9	83.6	90.4	100.1	113.7	131.2	146.7	166.1	182.6	200.1	224.3	242.8	257.3	266.0	272.8	281.6	287.4	203.7	100	1.142	v.w.

* Not shown in figure.

(continued)
с,
F CHROMIUM
۲ О
RESISTIVIT
ELECTRICAL
THE
NO
DATA
EXPERIMENTAL
TABLE 3.

-	٩	H	d	н	٩	Т	d	F	d	F	d
DATA SET 1	<u>13(cont.)</u>	DATA	SET 116	DATA SET	119(cont.)	DATA SET	122(cont.)	DATA SET	126(cont.)	DATA SET	126(cont.)
317.7	12.658	277.1	12.109	284.8	12.954	302.3	12.594	294.6	12.764	306.1	12.891
322.5	12.809	282.4	12.307	289.8	12.916	305.1	12.611	294.8	12.768	306.4	12.889
327.6	12.948	286.4	12.460	292.1	12.901	307.2	12.634	295.0	12.774	306.8	12.888
332.4	13.087	292.4	12.610	294.9	12.883	309.9	12.659	295.3	12.776	307.1	12.886
338.0	13.276	294.0	12.669	297.4	12.863			295.5	12.780	307.4	12.882
350.2	13.667	300.5	12.789	299.9	12.857	DATA	ET 123	295.8	12.786	307.6	12.879
		305.4	12.837	302.4	12.833			296.0	12.789	8.100	17.8/7
DATA S	ET 114	307.8	12.829	304.9	12.810	274.4	12.471	296.3	12.795	308.1	12.8/5
		310.4	12.789	307.2	12.786	279.7	12.502	296.5	12.800	308.3	12.873
304.5	12.633	311.8	12.632	310.0	12.751	284.6	12.522	296-8	12.804	308.6	12.867
305.4	12.648	312.0	12.646			289.7	122.21	0.162	12.808	308.9	12.862
307.1	12.665	312.8	12.661	DATA	SET 120	292.2	792.21	2.162	12.815	2.906	208-21 22 21
308.1	12.002	31/.5	818.21	0 076	010 01	0.042	12.5/4	C.182	010 CI	5.905 2005	100.21
0.600 5 005	10 202	1.026	006.21	6.602 0.75 0	12.0/9	2.142 200 0	160.21	201 0	010.21	2.000 A	170.21
	(70.71		117	0 100	710 11	207.62	17 664	100	770.71	0.60C	740.71
310.6	070.21	NALA	711 130	0.902	010.21	9.105	+co.1	2.062 200 k	070.71	1.600	10.21
510.0	12.000			9.402	C6/ 71			4.047	12.630	4.40c	CC0.71
311.1	12.497	271.5	12.274	292.3	12.790	DATA	SET 124	298.7	12.834	310.0	12.830
311.7	12.497	277.4	12.453	294.8	12.796			299.0	12.838	310.0	12.826
312.1	12.514	282.4	12.610	297.4	12.795	274.4	12.528	299.2	12.843	310.2	12.819
312.6	12.520	290.0	12.804	299.9	12.781	279.7	12.571	299.4	12.845	310.2	12.815
312.6	12.523	294.5	12.888	302.4	12.781	284.6	12.577	299.6	12.850	310.3	12.810
313.0	12.540	300.5	12.954	304.9	12.775	290.1	12.599	299.9	12.852	310.3	12.807
314.1	12.577	305.4	12.947	307.7	12.751	292.2	12.605	300.1	12.854	310.5	12.803
315.1	12.620	308.0	12.917	310.0	12.727	294.5	12.611	300.4	12.859	310.5	12.796
316.1	12.646	310.4	12.837	312.5	12.701	297.3	12.619	300.9	12.863	310.6	12.792
						302.3	12.648	301.2	12.866	310.6	12.790
DATA S	ET 115	DATA	SET 118	DATA	SET 121	307.4	12.674	301.7	12.870	310.7	12.787
						309.9	12.696	301.9	12.873	310.7	12.785
305.0	12.519	275.2	11.769	274.9	12.808			302.1	12.876	310.7	12.784
306.0	12.539	277.6	11.871	279.9	12.790	DATA	ET 125	302.4	12.877	310.7	12.780
306.8	12.554	280.7	12.010	284.7	12.778			302.7	12.881	310.7	12.776
308.0	12.551	287.3	12.270	289.8	12.764	274.7	12.665	302.9	12.882	310.7	12.775
0.905	12.542	293.1	12.464	294.8	12.749	279.5	12.671	303.0	12.884	310.7	12.772
1.906	12.534	297.3	12.592	299.6	12.743	284.6	12.671	303.4	12.884	310.8	12.766
309.9	12.517	302.1	12.705	304.7	12.736	289.7	12.668	303.6	12.886	310.8	12.762
310.5	12.500	306.8	12.756	307.2	12.728	294.5	12.668	303.8	12.887	310.9	12.756
311.0	12.383	308.0	12.753			299.6	12.677	304.1	12.888	310.9	12.752
311.4	12.372	310.4	12.738	DATA	SET 122	304.6	12.688	304.4	12.889	310.9	12.742
311.7	12.377	310.9	12.716			307.4	12.696	304.6	12.889	310.9	12.739
312.1	12.380			284.8	12.477			304.8	12.890	310.9	12.732
312.7	12.395	DATA	SET 119	289.7	12.511	DATA	ET 126	305.0	12.891	311.0	12.724
313.0	12.403			292.2	12.522			305.3	12.892	311.0	12.722
314.2	12.437	269.7	13.098	295.0	12.534	293.8	12.749	305.5	12.890	311.0	12.721
315.3	12.475	275.0	13.040	297.5	12.557	294.1	12.753	305.6	12.889	311.0	12.716
316.1	12.503	279.8	12.004	300.0	12.574	294.3	12.759	305.8	12.892	311.0	12.711

Materia and the state of the

* Not shown in figure.

Ę,

F	d	H	٩	н	٩	4	d	1	d	L	d
DATA SET	126(cont.)	DATA SET	127(cont.)	DATA SET	<u>127(cont.)</u>	DATA SET	128(cont.)	DATA SET	<u>129(cont.)</u>	DATA SET	131(cont.)
311.1	12.707	305.0	12.732	311.2	12.671	3.86	0.10101	277.8	11.938	9.58	0.96180
311.0	12.700	305.2	12.737	311.3	12.666	4.22	0.10100	282.4	12.225	10.17	0.96180
	12.696	20.00 2015	12 744	C.11C	12.000 12.000	4./9 5 57	0.10102	1.102	12 416	10.92	0.96170
311.1	12.693	306.3	12.748	312.0	12.671	6.25	0.10105	291.6	12.416	11.37	0.96167
311.2	12.687	306.4	12.753	312.2	12.674	6.83	0.10110	298.6	12.606	11.82	0.96180
311.3	12.685	306.7	12.753	312.5	12.679			300.9	12.606	12.42	0.96180
511.3	12.681	306.9	12.756	312.7	12.684	DATA	SET 129	305.5	12.510	13.17	0.96202
311.4	12.676	307.1	12.758	312.8	12.689			310.1	12.605	13.77	0.96210
311.3	12.675	307.4	12.759	313.0	12.692	4.68	0.861	314.7	12.700	14.68	0.96237
311.5	12.671	307.7	12.760	313.1	12.698	11.6	0.956	319.4	12.795	15.75	0.96290
311.6	12.670	307.9	12.762	313.4	12.703	20.8	0.859	321.7	12.891	16.06	0.96343
111.7	12.670	308.1	12.762	313.7	12.709	20.8	0.955	328.6	13.177		
911.9	12.671	308.4	12.765	313.8	12.716	27.8	0.859	i		DATA	SET 132
912.0	12.0/2	308.6	12.765	314.2	12.726	30.1	0.954	DATA	SET 130		
312.0	12.0/3	308.9	12.763	314.4	12.732	39.3	0.953			1.65	0.86027
11216	12.0/4	309.1	12.763	314.6	12.737	48.5	1.047	219.7	12.154	2.09	0.86024
912.4	17.6/7	309.3	12.763	315.1	12.752	57.8	1.046	282.1	12.229	2.54	0.86021
512.5	12.680	309.5	12.762	315.4	12.757	69.3	1.333	288.0	12.342	2.83	0.86022
312.0	12.683	309.6	12.761	315.6	12.765	74.0	1.523	289.2	12.530	3.28	0.86022
312.7	12.685	309.9	12.761	315.8	12.772	78.6	1.714	293.9	12.568	3.57	0.86018
512.8	12.089	309.9	12.756	316.1	12.780	90.1	2.001	299.8	12.681	19.0	0.86012
312.9	12.691	310.0	12.754	316.3	12.788	99.4	2.382	305.6	12.737	5.35	0.86007
0.410	97/.71	1.015	5C/ . 71	316.6	12./94	106.3	2.273	510.3	12.699	5.0 10	16668.0
314.8	12.741	310.1	12.751	316.8	12.800	111.0	2.764	315.1	12.737	6.53	0.85990
314.8	12.748	310.3	12.749	317.0	12.808	115.6	3.147	315.1	12.775	6.8.	0.85984
316./	12.799	310.3	12.747	317.3	12.815	120.2	3.338	319.8	12.906	7.42	0.85980
31/.0	12.806	310.3	12.745	318.3	12.844	129.5	3.719	324.5	13.094	7.57	0.85984
317.5	12.822	310.4	12.741	318.5	12.852	134.1	4.102	330.4	13.208	8.01	0.85971
11/16	12.829	310.6	12.739	318.7	12.861	138.8	4.293			9.05	0.85977
0.010	12.03/	310.6	12./35	318.9	12.869	148.0	4.867	DATA	A SET 131	9.49	0.85969
1.026	906.21	310.6	12./32	319.3	12.875	159.6	5.536		100.0	10.09	0.859//
0.17A	117	0.012	12./31	4.910	12.862	100.0	0110	4. 59	17596.0	17.11	0.6594/5
VIUN	171 171	9.01c	97/.71	1.416	168.21	1.8/1	0.000	4.40	10020 0	02.11	0.05900
	01, 0,	310.7	12./23			8.281	0.8/3	51.C	0.90304	10.21	0.629.2
9.10C	7/0.71	310.8	12.720	DATA	V SET 128	187.4	7.362	0.43	0.96298	13.50	01858.0
9.105	12.6/9	310.8	12.716			201.3	7.925	5.74	0.96317	13.80	0.86012
301.9	12.685	310.9	12.709	1.51	0.10106	203.7	8.308	6.02	0.96284	14.39	0.86021
302.1	12.689	311.0	12.703	1.77	0.10105	208.3	8.498	6.76	0.96260	14.84	0.86036
302.4	12.694	311.0	12.694	2.05	0.10105	217.6	9.072	7.21	0.96250		
302.6	12.699	311.0	12.692	2.33	0.10104	229.1	9.645	7.50	0.96239	DATA	SET 133
303.1	12.706	311.0	12.686	2.47	0.10103	238.4	10.315	7.95	0.96237		
303.3	12.706	311.0	12.681	2.78	0.10102	247.7	10.888	8.10	0.96222	1.97	0.79508
303.6	12.711	311.1	12.677	3.01	0.10102	257.0	11.079	8.39	0.96197	2.56	0.67552
303.8	12.715	311.1	12.674	3.24	0.10101	266.2	11.556	8.99	0.96201	2.56	0.60725
1.406	12./30	311.2	12.673	3.40	0.10101	270.8	11.748	9.58	0.96170	2.86	0.46648
										٥، ، ٥	0.31243

* Not shown in figure.

45

į

(continued)
ភ
DF CHROMIUM
RESISTIVITY (
ELECTRICAL
THE
NO V
DAT
EXPERIMENTAL
TABLE 3.

-	٩	н	٩	H	٩	н	٩	ų	α	T	đ
DATA SE	[133(cont.)	DATA SET 1	1 36(cont.)	DATA SET	1 39(cont.)	DATA SET	142(cont.)	DATA SET	145(cont.)	DATA SET	[46(cont.)
3.30	0.37245	121.4	1.141	313.9	6.676	311.3	12.816	299.4	12.725	311.8	12.687
4.20	0.34839	123.9	1.307	317.6	6.722	313.0	12.622	299.9	12.739	311.9	12.661
4.79	0.18398	126.3	1.426	320.0	6.814	320.8	12.958	301.0	12.777	311.9	12.648
5.70	0.39417	128.8	1.736	322.5	6.929	326.4	13.151	301.7	12.777	312.9	12.661
	0. /9188	130.0	1.9/3	326.0	1.06/	-		302.4	12.790	316.7	12.790
	T.26000	130.6	2.140	DATA C	071 140	DATA	SET 143	303.2	12.816	318.5	12.854
				ALA S	140			304.0	12.816		
DATA S	134	DATA S	ET 13/	101	1 17B	76.1	0.929	305.4	12.841	DATA S	ET 147
				C'101	0/077	1.02	1.4U/	6.105	17.841	1	
102.0	16/11	103.2	1.825	103.8	2.4/3	0.99.0	1.794	309.0	12.829	295.2	12.609
5.501	109.1	1.01	1.900	0.01	44C.2	123.6	3.239	310.0	12.816	297.1	12.674
100.0	1.697	1.101	2.100	100.3	2.039	1/5.6	6.376	310.6	12.803	299.0	12.725
	142.1	0.701	477.7	0.001	06/ 7	6.022	210.6	311.2	12./90	300.1	12.751
0.111	1.900	0.111	2.31/	111.3	276.2	275.0	12.003	311.4	12.700	303.0	12.803
113.8	2.034	113.5	2.411	0.611	3.091	311.3	12.764	311.5	12.738	305.2	12.829
110.4	161.2	116.7	2.598	116.9	3.115	312.4	12.570	311.7	12.661	307.5	12.841
1.9.1	2.291	119.3	2.785	118.8	3.138	320.8	12.958	312.7	12.635	309.6	12.816
120.4	2.409			122.5	3.281	327.5	13.151	313.4	12.661	311.8	12.700
124.3	2.572	DATA S	ET 138	122.5	3.376			313.8	12.674		
130.2	2.852			123.8	3.447	DATA 5	IET 144	314.2	12.700	DATA S	ET 148
		121.3	1.667	125.0	3.566			314.6	12.712		
DATA S	ET 135	122.0	1.739			296.1	12.880	315.2	12.725	299.4	12.545
		124.0	1.788	DATA S	ET 141	297.5	12.906	315.5	12.738	300.8	12.583
285.0	9.153	126.6	1.836			299.9	12.930	316.1	12.764	302.1	12.622
288.8	9.226	128.6	1.932	110.6	2.651	302.4	12.958	316.5	12.777	303.4	12.661
291.3	9.367	129.9	1.957	111.3	2.740	303.1	12.971	316.9	12.803	304.7	12.700
295.1	9.438	131.8	2.005	113.9	2.793	304.2	12.971	317.4	12.816	306.1	12.725
300.1	9.533	133.8	2.005	115.2	2.865	304.9	12.971	318.0	12.841	307.2	12.738
303.8	9.580	135.8	2.101	117.1	3.007	305.5	12.971			308.6	12.751
308.8	9.580	139.1	2.078	118.4	3.102	306.5	12.958	DATA 5	JET 146	309.9	12.751
308.8	9.532	140.4	2.294	119.7	3.197	307.4	12.958			310.6	12.751
312.6	9.461	141.7	2.391	122.3	3.269	308.3	12.945	300.0	12.919	311.1	12.738
315.1	9.532	145.0	2.511	123.6	3.411	309.2	12.919	301.9	12.932	311.3	12.725
317.6	9.627	148.3	2.559	126.2	3.625	311.3	12.880	302.9	12.945	311.4	12.712
322.6	9.722	150.2	2.632	130.0	3.791	312.3	12.622	303.8	12.958	311.8	12.648
326.3	9.793	152.9	2.704	130.7	3.886	314.1	12.687	304.8	12.958	311.9	12.635
				132.6	4.028	314.9	12.725	306.5	12.971	312.3	12.635
NAIA S	CL 130	DATA SI	ET 139			315.9	12.751	307.7	12.958	313.1	12.648
				DATA S	ET 142	316.6	12.790	309.0	12.932	313.5	12.674
105.5	0.975	287.3	6.609			317.7	12.829	310.3	12.893	314.7	12.712
10/.3	0.975	290.9	6.655	76.1	0.929	319.6	12.893	310.9	12.854	317.1	12.816
8.601	0.999	295.8	6.701	0.0	1.988			1.110	12.829	318.7	12.854
111.6	0.999	299.4	6.746	124.7	3.536	DATA S	ET 145	311.5	12.790	320.0	12.906
114.7	1.046	303.1	6.793	175.0	6.814			311.5	12.764		
116.5	1.094	307.9	6.792	225.4	10.041	297.8	12.687	311.6	12.751		
119.6	1.117	312.7	6.723	275.6	12.390	298.6	12.712	311.7	12.725		
* Not sh	own in figure.										

F	d	F	Q	F	م	F	ď	T	٩	T	σ
DATA S	ET 149	DATA SET	151 (cont.)	DATA	SET 153	DATA SET 1.	<u> (cont.)</u>	DATA SET 1.	55(cont.)	DATA S	ET 157
299.1	12.725	163.6	5.273	32.5	0.0370	233.2	6.96 5	232.4	6.58	216.1	6.79
304.4	12.829	174.3	5.716	0.04 A AA	0.062	0.121 0.72 0	81.7	236.0	0.82 7.07	228.4	1.8.1
307.0	12.854	178.5	5.852	49.8	0.123	247.1	7.61	247.3	7.23	252.3	9.83
309.6	12.829	183.9	6.049	55.2	0.172	251.4	7.83	252.6	7.48	263.9	10.65
		193.5	6.209	59.5	0.259	256.7	8.06	256.9	7.70	274.0	11.40
DATA	SET 150	198.9	6.344	63.8	0.370	262.0	8.28	262.2	7.92	280.5	11.87
2.4	0.0149	207.6	6.209	74.5	0.591	271.6	8.2U 8.75	DATA S	SET 156 .	286.3	12.13
4.2	0.0149	213.0	6.320	83.1	0.788	275.8	9.02			292.1	12.43
20.4	0.0157	218.3	6.517	84.1	0.899			70.2	0.505	295.7	12.52
78	0.0939	221.5	6.677	88.4	1.12	DATA	ET 155	16.6	0.727	297.8	12.56
DATA (267 151	221.0	6.936 7 005	93.7	1.26		000 0	83.0	0.949	300.0	12.65
VIUN	101 101	7777	960.1	98.0	1.39	4.6C	0.320	89.4	1.17	306.5	12.60
11.4	0.0616	DATA C	65T 153	112 0	9C.1	1.09	0.394	1.56	1.3/	308.6	12.60
9.73	0.0616	WTIN	717 176	118.4	1.86	1.60	0.127	113.0	1.72	320.0	00 11
15.1	0.0616	59.5	0.283	122.7	1.92	83.0	0.949	118.4	1.79	131.0	13.47
20.6	0.0616	64.8	0.394	129.1	2.12	89.4	1.17	128.1	2.08		
24.9	0.0616	70.2	0.505	133.4	2.30	92.6	1.39	133.4	2.30	DATA S	ET 158
29.2	0.0616	74.5	0.616	144.1	2.66	0.69	1.53	138.7	2.48		
34.6	0.0862	75.5	0.702	149.4	2.83	0.92	1.61	144.1	2.66	298.5	12.712
0.04	0.123	78.8	0.788	154.7	3.06	103.2	1.84	149.4	2.83	299.6	12.720
47.4	0.148	82.0	0.702	159.0	3.24	108.6	2.08	152.6	3.02	300.6	12.742
	7/1.0	5.70t	1.946	164.3	3.41	113.9	2.33	157.9	3.19	301.7	12.765
1.00	662.U	113.9	2.193	168.6	3.63	118.1	2.55	163.3	3.41	302.8	12.789
	0.2.0 9.54 0	110.1	2.4LJ	1.111	4.04	C.621	2.11	168.6	5.03 202	304.0	12.809
10.0	0.616	0 001	2.297 2.027	C.COI	07.4	178.8	09.7	1/3.9	50.7	305.0	128.21
73.4	0.727	1 881	2.003	10/ 01	4.40	134.1	2.10	119.2	4.0/	306.0	12.843
77.6	0.899	138.4	3.289	7.941	4.00	1 1 1 1 1	3.29	0.401	4.40	307.4 207	12.045
84.0	1.121	144.8	3.462	202.7	5.06	1.941	1.51	194.7	49-4	208.40	12.853
89.4	1.281	149.1	3.622	209.1	5.31	153.5	3.46	198.4	4.84	308.8	12.853
93.7	1.528	153.4	3.683	217.6	5.73	158.9	3.57	203.8	5.06	309.3	12.849
100.0	1.749	158.8	3.622	222.9	5.94	163.1	3.73	208.0	5.28	309.7	12.845
104.3	1.971	164.2	3.794			173.8	4.15	212.3	5.47	309.9	12.845
108.5	2.242	173.8	4.152	DATA SI	ST 154	179.1	4.35	217.6	5.69	310.5	12.837
8.511	2.20	180.2	4.349			183.4	4.56	222.9	5.89	311.0	12.831
7.021	179.2	184.5	4.570	188.2	6.07	187.6	4.82	227.2	6.11	311.2	12.823
4.47T	3.043	198.3	5.174	192.5	6.18	194.0	4.98	232.5	6.27	311.5	12.805
9.071	165.6	202.6	5.359	197.9	6.23	198.3	5.09	236.8	6.47	311.9	12.791
0.4c1	770.C	6.102	190.0	2.202	0.21	203.7	5.31	241.0	6.71	312.0	12.787
3 991	0000.C	1.212	8//.0	8.802	/0.0	207.9	5.58	247.4	6.94	312.2	12.763
148.8	4 447	a	212.0	5 715 5 715	01.0	7.717		1.102	(. LJ	312.3	(7/.71
156.2	4.780	0.111	P01-0	C./12	00	0.012		0./02	1.32	9.216	61/-71
159.4	5.002			776 0	00 A 70	1.122	01.0	5.202	PC .1	312.9	A[/.7]
						7.177	00.0				
* Not sho	wn in figure.										

,	a	T	٩	t.	٩	т	٥	÷	٩	н	ď
DATA SET 1	58(cont.)	DATA SET	160(cont.)	DATA SET	160(cont.)	DATA SET 1	61(cont.)	DATA SET	161(cont.)	DATA SET	162(cont.)
313.0	12.727	302.65	12.689	311.25	12.680	304.65	12.716	311.10	12.599	308.77	12.737
313.3	12.735	302.80	12.692	311.33	12.679	304.76	12.718	311.22	12.596	308.89	12.735
1.616	10.21	202.205	12.696	87.115	12.675	10. 205	12.721	311.56	12.596	309.08	12.600
314.8	12.771	303.37	12.698	311.55	12.673	305.33	12.722	311.63	12.598	309.23	12.734
115.4	12.799	303.75	12.702	311.74	12.668	305.48	12.722	311.78	12.600	309.34	12.726
0.716	12.838	303.94	12.704	79.116	12.664	305.67	12.724	311.90	12.602	309.38	12.724
318.2	12.854	304.20	12.706	312.16	12.662	305.86	12.725	312.08	12.607	309.50	12.722
318.9	12.878	304.43	12.707	312.27	12.660	306.09	12.726	312.20	12.610	309.57	12.719
319.4	12.888	304.66	12.710	312.39	12.659	306.39	12.727	312.31	12.612	309.65	12.717
319.8	12.906	304.84	12.712	312.50	12.659	306.62	12.727	312.46	12.616	309.72	12.714
		305.00	12.713	312.62	12.659	306.92	12.728	312.54	12.620	309.72	12.712
DATA	ET 139	305.22	12.714	312.77	12.658	307.34	12.728	312.69	12.623	309.80	12.709
		305.45	12.715	313.07	12.658	307.71	12,726	312.84	12.629	309.88	12.706
193.0	10.331	305.68	12.717	313.26	12.659	307.87	12.726	312.95	12.632	309.95	12.702
193.8	10.331	305.83	12.718	313.60	12.663	308.09	12.724	313.18	12.638	309.99	12.697
212.6	10.834	305.94	12.718	313.90	12.666	308.24	12.724	313.37	12.643	310.03	12.694
232.3	11.278	306.17	12.719	313.98	12.668	308.40	12.722	313.52	12.648	310.11	12.690
232.8	11.231	306.36	12.720	314.09	12.669	308.62	12.720			310.18	12.687
252.8	11.558	306.51	12.721	314.28	12.672	308.81	12.717	DATA	SET 162	310.22	12.682
252.8	11.582	306.66	12.721	314.36	12.673	309.00	12.715			310.26	12.678
272.9	11.699	306.85	12.721	314.47	12.675	309.12	12.713	304.15	12.733	310.30	12.674
278.0	11.664	307.00	12.721	314.51	12.677	309.23	12.710	304.19	12.734	310.34	12.670
283.1	11.629	307.23	12.722	314.66	12.678	309.34	12.707	304.53	12.737	310.37	12.667
292.1	11.710	307.46	12.721	314.73	12.680	309.42	12.704	304.68	12.738	310.37	12.663
302.3	11.921	307.76	12.721	314.85	12.682	309.50	12.702	305.06	12.740	310.45	12.655
302.8	11.909	308.06	12.720	314.96	12.685	309.61	12.700	305.21	12.742	310.45	12.652
302.8	11.944	308.33	12.719			309.69	12.697	305.33	12.742	310.53	12.649
346.3	12.786	308.56	12.719	DATA	SET 161	309.73	12.695	305.44	12.743	310.60	12.643
347.2	12.821	308.71	12.717			309.81	12.692	305.67	12.744	310.60	12.640
		308.90	12.716	300.07	12.651	309.84	12.689	306.05	12.745	310.68	12.636
DATA S	ET 160	309.16	12.714	300.49	12.658	309.92	12.687	306.27	12.745	310.68	12.632
		309.31	12.713	300.75	12.663	310.00	12.682	306.35	12.746	310.76	12.628
300.23	12.655	309.54	12.710	301.02	12.668	310.11	12.677	306.50	12.746	310.83	12.624
300.42	12.658	309.66	12.709	301.24	12.671	310.15	12.672	306.73	12.746	310.91	12.623
300.57	12.660	309.81	12.708	301.47	12.676	310.26	12.668	307.03	12.746	310.99	12.616
300.72	12.662	309.88	12.705	301.74	12.679	310.26	12.663	307.11	12.746	311.06	12.612
300.91	12.665	310.00	12.704	302.15	12.685	310.34	12.658	307.33	12.746	311.10	12.609
301.06	12.668	310.26	12.701	302.30	12.688	310.41	12.651	307.56	12.745	311.21	12.608
301.25	12.671	310.34	12.699	302.53	12.692	310.49	12.646	307.67	12.745	311.33	12.606
301.40	12.674	310.41	12.698	302.83	12.695	310.57	12.641	307.75	12.744	311.56	12.606
301.55	12.675	310.53	12.696	303.10	12.699	310.64	12.631	307.83	12.744	311.63	12.609
301.74	12.678	310.76	12.690	303.29	12.701	310.68	12.626	307.90	12.743	311.74	12.611
301.93	12.681	310.87	12.688	303.51	12.704	310.76	12.619	308.05	12.743	311.82	12.613
302.12	12.683	310.95	12.687	303.66	12.706	310.83	12.613	308.36	12.741	311.97	12.617
302.35	12.685	311.02	12.684	304.27	12.702	310.91	12.608	308.47	12.740	312.08	12.620
302.50	12.688	311.14	12.683	304.38	12.714	310.99	12.603	308.55	12.739	312.16	12.621

. . .

* Not shown in figure.

٩	cont.)	2.624 2.626	2.628	Z.634 2.638	2.642	2.650	2.658 2.658 2.662	163*	0.101	0.102	0.107	0.126	0.209	0.314	0.690	0.983	2.37	3.35	4.92 - 48	9.01	9.51	0.99	3.90			
	A SET 162(12.20	12.52	12.56 I	2.80 1			DATA SET	 	0	 		00	•••	, 0	00		5	0.		5.0	a 12				

3.2. Cobalt

There are 55 sets of experimental data available for the electrical resistivity of cobalt with purity higher than 99.9%. The information on specimen characterization and measurement condition for each of the data sets is given in table 5. The data sets are tabulated in table 6 and shown partially in figures 3 and 4.

Since cobalt is a transition element and is ferromagnetic, its electrical resistivity is expected to resemble those of nickel and iron. As it can be surmised from the size of the available data, the electrical resistivity of cobalt is not investigated as extensively as either that of iron or of nickel. Nonetheless, some features of the behavior of the electrical resistivity of iron and nickel have also been reported for cobalt, such as the T^2 variation in the temperature dependence of the electrical resistivity at low temperatures. The coefficient of this T^2 term becomes larger when measured in an applied magnetic field than when measured in the absence of an applied field [75].

Judging from the impurity analyses reported by some of the authors, cobalt specimens of purity higher than 99.999% are available commercially: Laubitz and Matsumura [76] (data set 43), White and Woods [77,21] (data sets 27, 28, 39), Kierspe et al. [78] (data set 16). However, there are wide disagreement between the reported residual resistivity ratios, even for specimens from the same manufacturer and having nearly the same impurities, as illustrated by the specimens of data sets 27 and 39. Since cobalt is nearly as strongly magnetic as iron (the spontaneous magnetization of 20.8 kG vs. 22 kG for iron), effects due to magnetic structure of specimens and due to the measuring current densities, etc. are expected to be significant. Unfortunately, there is very scarce information on these effects for cobalt specimens. In addition, the morphology of cobalt may have significant influence also. Even though the temperature of the α - β phase transformation of cobalt is greater than 700 K, this cph-fcc transformation is very sluggish, and the high-temperature fcc phase has been reported to persist at lower temperatures [79]. It is not unlikely for a specimen to contain a mixture of these two phases, depending on its thermal and mechanical history [76].

Amongst the available data for high-purity polycrystalline cobalt specimens, Laubitz and Matsumura [76] (data set 43) reported the highest residual resistance ratio ($\rho_{273} \text{ K}/\rho_{4} \text{ K}$) of 140 ± 10. The impurity analysis reported also indicated

that their specimen was one of the purest. For comparison, the residual resistance ratio of a whisker specimen by Marker et al. [75] (data set 19) was reported to be 388. There are available only a few data sets giving the electrical resistivity of high-purity cobalt over a temperature range extending from ~ 4 to 300 K: White and Woods [77] (data sets 27, 28), and Price and Williams [80] (data set 26). Aside from these data sets, White and Woods [21] (data set 39) reported data from 126 to 273 K, Semenenko et al. [81] (data set 3), Olsën-Bar [82] (data sets 4, 5), and Radhakrishna and Nielsen [83] (data set 9) reported data for low temperatures (<20 K) only. In addition, Loegel and Gautier [84] (data sets 47, 48) reported the temperature dependent part of the resistivity of specimens of unspecified purity for temperatures below 80 K. Most of these authors reported a T^2 dependence for the temperature dependent part of the resistivity for temperatures below 10 K. The coefficient of this T² component was reported to be 1.6 x $10^{-11} \Omega \text{ m K}^{-2}$ by White and Woods [77] and $\leq 1.0 \times 10^{-11} \Omega \text{ m K}^{-2}$ by Radhakrishna and Nielsen [83]. Loegel and Gautier [84] reported, together with a T^5 component, a coefficient of 1.06 x $10^{-11} \Omega \text{ m K}^{-2}$ for temperatures up to 30 K. Semenenko et al. [81] reported an additional T component for temperatures 1.4-4.2 K; however, Radhakrishna and Nielsen [83] concluded from their data that the T component, if present at all, was not significant. Marker et al. [75] also reported the T^2 dependence for their whisker specimen with a coefficient of 1.5 x $10^{-11} \Omega m K^{-2}$ in the temperature range 1.1-4.2 K.

The present analysis of the electrical resistivity of cobalt at low temperatures follows the same method as employed in the analysis of that of iron and nickel, i.e., by fitting the resistivity data to the expression

$$\rho = \rho_0 + \alpha T^2 + A \left(\frac{T}{\theta_R}\right)^5 \int_0^{\theta_R/T} \frac{x^5 e^x}{(e^x - 1)^2} dx$$
(8)

However, because of the small number of available data sets and because of the apparent large deviation of the electrical resistivity of cobalt from the Mattheissen's rule, the coefficients α and A cannot be determined simultaneously with small uncertainties. Therefore, the value of α is taken to be 1.00 x $10^{-11} \Omega$ m K⁻², a value close to the mean of the coefficients reported by Radhakrishna and Nielsen [83] and by Loegel and Gautier [84]. Using a Debye

temperature of 445 K approximately as the value for $\theta_{\rm R}$, the value of A was determined from eq (8) with the data of White and Woods [77] (data sets 27, 28). A value of 70 x $10^{-8} \Omega {\rm m} {\rm K}^{-2}$ was obtained. With these values of α and A, the resistivity values calculated from eq (8) agree to within 2% with the experimental data for temperatures below ~ 25 K. For higher temperatures, the calculated values do not agree well with the experimental data, and therefore in the temperature range ~ 35 to 90 K, the recommended values were obtained by interpolating the low-temperature values calculated from eq (8) and the data of Laubitz and Matsumura [76] (data set 43).

Two data sets are available covering a very wide temperature range ($^{80-}$ 1700 K): by Laubitz and Matsumura [76] (data set 43) and by Kierspe et al. [78] (data set 16). Except for temperatures below ~ 200 K, where the latter data set appears to be in error, the agreement between these two data sets is within $\sim \pm 3\%$. The recommended values from 90 to 1700 K are therefore based on these, with more weight given to that of Laubitz and Matsumura, especially for temperatures below 250 K. In this temperature range, cobalt undergoes two transitions: one polymorphic at $\sqrt{715}$ K, from cph(α) to fcc(β), and one ferromagnetic-paramagnetic at ∿1395 K. The polymorphic transformation is martensitic and is very sluggish, due to the small associated free energy change. Thus the temperature range in which this transformation occurs has been reported to vary from about 660 K [85] (data set 14) to about 740 K [86] (data set 1), and thermal hysteresis is generally reported. The careful study of Laubitz and Matsumura [76] on a specimen which had been x-ray analyzed to contain no detectable fcc phase at room temperature showed that the range of transformation was about 703-710 K upon heating and about 686-693 K upon cooling (data sets 44, 45). The resistivity of the β phase is generally reported to be lower than that of the α phase. Kierspe et al. [78] did not report details of the transformation, even though their data appeared to have a strange behavior at the transformation, which occurred at $\sqrt{720} \pm 5.0$ K. These authors reported a temperature coefficient that shows a decrease ($\sqrt{30}$) at the transition, instead of the usual positive-negative-positive change in the temperature coefficient indicated by a number of the other works (see, e.g., Laubitz and Matsumura [76] (data sets 44, 45), Powell [85] (data sets 11-14), and Fraser et al. [86] (data sets 1, 2)). A possible reason for the behavior of the data of Kierspe et al. was that their specimen might have been heated or cooled at too fast a rate.

5.3

The α - β phase transition temperature of 715 K indicated in figures 3 and 4 is based actually on specific heat measurements. At temperatures above the α - β transition, the temperature coefficient reported by Kierspe et al. [78] showed a gradual rise to a flat maximum at \sim 1150 K, and decreased gradually again. It became almost constant at temperatures above \sim 1500 K. There was no sharp δ -function like maximum as in the cases of nickel and iron at the Curie temperature. This behavior of their data is consistent with the data of Laubitz and Matsumura [76] (data set 43), which appeared to have a change of slope at \sim 1250 K. At temperatures above the Curie temperature, the data of Seydel and Fucke [87] (data set 42) are in good agreement with those of Laubitz and Matsumura [76] and of Kierspe [78] and are also taken into account.

There are eight data sets for the electrical resistivity of molten cobalt [87-94] (data sets 7, 18, 40-42, 50-52). Of these, the data of Güntherodt et al. [92] (data set 41) and of Seydel and Fucke [87] (data set 42) agree to within $\pm 1\%$. In addition, their data for the solid phase at the melting point agree to within $\pm 1.5\%$ of the recommended value. The recommended values for the molten state are therefore based on their data. The linear temperature dependence of the electrical resistivity of molten cobalt was reported also by Ono and Yagi [89] (data set 18), and by Kita et al. [93] (data sets 50,51).

The recommended values both uncorrected and corrected for thermal expansion of the material are presented in table 4, while only the uncorrected values (except those for the liquid state) are shown in figures 3 and 4 along with the experimental data. The values are for polycrystalline cobalt of purity 99.99% or higher; however, those values for temperatures below 200 K are applicable only to cobalt having a residual resistivity of 0.0370 x $10^{-8} \Omega m$. The estimated uncertainty in the recommended values is about $\pm 5\%$ for the solid state and $\pm 7\%$ for the molten state.

As mentioned earlier, the electrical resistivity of cobalt appears to deviate from the Matthiessen's rule fairly large. For specimens with somewhat higher residual resistivities, the application of Matthiessen's rule is likely to underestimate the electrical resistivity by up to a few percent. For example, for the specimens of White and Woods [77] (data sets 27,28) which have residual resistivities of about 0.09 x $10^{-8} \Omega m$, Matthiessen's rule appears to be applicable for temperatures below ~15 K with resulting error less than -1%, but the error increases with temperature to -2% at ~20 K, -5% at ~35%, and -6% at 200 K and higher. For the specimen of Price and Williams [80] (data set 26) which has

a residual resistivity of $0.13 \times 10^{-8} \Omega$ m, the errors are approximately +2% at ~20 K, -6% from ~35 to 60 K, -5% at 100 K, and -4% from 200 to 300 K. Unfortunately, there are no available data sets for specimens of higher residual resistivity covering more or less continuously from low to room temperatures, so that a more extensive comparison could be made. The earlier measurement by McLennon et al. [50] (data set 30) on a specimen of residual resistivity 0.45 x $10^{-8} \Omega$ m indicates that the use of Mattheissen's rule yields an error of only -1% at 20.6 K, but the error jumps to -20% at 83 K and reduces to \sim -10% at 293 K. The more recent measurement by Wilkes [95] (data set 46), whose specimen has a residual resistivity of $\sim 0.17 \times 10^{-8} \Omega$ m, shows that the errors are -1% at ~ 77 K, +1% at \sim 200 K, and +1% at \sim 300 K. It is interesting to note that the total impurity content of this specimen, 0.08%, is more than ten times higher than that of the specimen of White and Woods [77] (data sets 27, 28). However, it has been determined by Laubitz and Matsumura [76] that the specimen of Wilkes contains approximately 33% of the fcc phase at room temperature. It is evident that the phase constitution of a specimen has significant influence on the resistivity of cobalt, especially below the α - β transition. The presence of the fcc phase below 7CO K is likely to lower the resistivity. On the other hand, the low-temperature cph phase is not likely to be stable at temperatures much higher than 700 K so that the higher temperature resistivity of cobalt of reasonable purity should not deviate by more than two or three percent from the recommended values.

The recommended values uncorrected for thermal expansion given in table 4 can be represented approximately by the following expressions to within $\pm 0.5\%$. 1-35 K:

$$\rho = 0.0370 + 1.00 \times 10^{-5} T^{2} + 70 \left(\frac{T}{445}\right)^{5} \int_{0}^{445/T} \frac{x^{5} e^{x}}{(e^{x} - 1)^{2}} dx$$
(19)

35-90 K:

$$\rho = 8.20 \times 10^{-2} - 5.261 \times 10^{-3} T + 1.477 \times 10^{-4} T^2 - 8.559 \times 10^{-8} T^3$$
(20)

90-700 K:

$$\rho = -9.98 \times 10^{-1} + 1.865 \times 10^{-2} \text{T} + 4.237 \times 10^{-6} \text{T}^2 + 3.777 \times 10^{-8} \text{T}^3$$
(21)
715-1250 K:

$$\rho = 31.71 - 1.0987 \times 10^{-1}T + 1.7872 \times 10^{-4}T^2 - 5.098 \times 10^{-8}T^3$$
(22)

1250-1400 K:

$$\rho = -117.61 + 1.8101 \times 10^{-1}T + 2.042 \times 10^{-8}T^2 - 1.773 \times 10^{-8}T^3$$
 (23)
1400-1767 K:

 $\rho = -342.15 + 7.2544 \times 10^{-1}T - 4.1393 \times 10^{-4}T^{2} + 8.201 \times 10^{-8}T^{3}$ (24) 1767-3000 K:

 $\rho = 94.80 + 1.128 \times 10^{-2} T$ (25)

It should be stressed that these expressions do not necessarily suggest any theoretical justification, and should be treated, most appropriately, as numerical aids only. It should also be understood that giving these expressions does not imply a recommendation for the temperature derivative of the electrical resistivity.

TABLE	4.	RECOMMENDED	VALUES	FOR	THE	ELECTRICAL	RESISTIVITY	OF	COBALT
-------	----	-------------	--------	-----	-----	------------	-------------	----	--------

Т		þ	Т		ρ
	uncorrected	corrected		uncorrected	corrected
1	0.0370	0.0370	1100	59.26	60.05
4	0.0372	0.0372	1200	69.14	70.18
7	0.0375	0.0374	1300	78.79	80.11
10	0.0381	0.0380	1400	87.20	88.83
15	0.0396	0.0395	1500	91.46	93.34
20	0.0426	0.0425	1600	94.81	96.94
25	0.0481	0.0480	1700	97.76	100.15
30	0.0581	0.0580	1767	99.75(β)	102.32(B)
40	0.102	0.102	1767		114.7b(l)
50	0.178	0.178	1800		115.1 ^b
60	0.280	0.279	1900		116.2 ^b
70	0.408	0.407	2000		117.4 ^b
80	0.563	0.562	2100		118.5 ⁰
90	0.742	0.740	2200		119.6
100	0.947	0.945	2300		120.7
150	2.02	2.02	2400		121.9 ^b
200	3.20	3.20	2500		123.0 ^b
250	4.52	4.52	2600		124.1 ⁶
273	5.18	5.18	2700		125.2 ^b
293	5.78	5.78	2800		126.4
300	6.00	6.00	2900		127.5 ^b
350	7.67	7.67	3000		128.6
400	9.56	9.57			
500	14.11	14.15			
600	19.88	19.97			
700	27.09(α)	27.25(α)			
715	25.89(β)	26.07(β)			
800	32.09	32.36			
900	40.43	40.83			
1000	49.58	50.15			

[Temperature, T, K; Electrical Resistivity, ρ , $10^{-8} \Omega m$]

^a The values are for polycrystalline cobalt of purity 99.99% or higher, but those below 200 K are applicable only to cobalt having a residual resistivity of 0.0370 x $10^{-8} \Omega m$. The columns headed uncorrected and corrected refer to values uncorrected and corrected for thermal expansion, respectively. Solid line separating tabular values indicates solid to liquid state transformation, while dotted line indicates solid phase transition.

 α : cph; β : fcc.

A second s

Provisional value.

99.9 pure; 99.5 Co + Ni, 0.07 Ni, 0.005 Fe, 0.001 Cu, 0.005 S, and 0.008 C by chemical analysis; <0.001 Ag, Al, B, Be, Ca, Cr, Hg, Mg, Mn₂ Mo, Pb, Sb, and Zn each by spectrographical analysis; 8.99 x 10° 40.2, $c_{24} \times 10^{-6} N_{23}$ and 1.9 x 10⁻⁰ Hz for specimen hot rolled to 0.127 cm (0.050 in.); 1.47 x 10⁻³ 02, 1.19 x 10⁻³ N2, and 4.3 x 10⁻⁶ Hz for specimen hot tolled to 0.127 cm (0.050 in.) and cold rolled to 0.0762 cm (0.030 in.); 1.31 x 10⁻³ 02, 4.8 x 10⁻⁶ N2, and 3.9 x 10⁻⁶ Hz for specimen annealed at 1273 K after hot and cold rolling; gas im-purities determined by gas analysis; strip specimens from Sherrit Gordon Mines; prepared from powder; rolled to desired thickness, and annealed at 1203 K for 1 h; density 8.85 x 10⁻⁶ Kg m⁻³ N2, and 668 K upon cooling; TC 1394 K; data extracted from heating and 668 K $3 \times 6 \times 120$ mm; magnetized along the long axis of a solenoid producing magnetic fields up to 3000 0e; data extracted from figure. Spectroscopically pure wire; obtained from Johnson Matthey Co.; 0.1 mm 5 mm in diam; cross section of $\sqrt{0.30} \times 0.25 \text{ mm}^2$ and $\sqrt{35} \text{ mm}$ long; residual resistivity ratio, R(273 K)/R(0 K) 26.19; values calculated from reported R(T)/R(273 K) with $\rho(273 \text{ K}) = 5.57 \times 10^{-8} \Omega \text{ m}$, taken from Bridgman, P.W., Proc. Am. Acad. Arts Sci., $\underline{79}$, 149, 1940; measured with terrestial magnetic field compensated by means of Helmhdtz at approximately two thirds of the melting temperature by passing a current through it; Debye temperature = 385 K; values calculated from reported $\rho(T)/\rho(90 \text{ K})$, with $\rho(90 \text{ K}) = 0.744 \times 10^{-6} \Omega \text{ m}$, taken from in diam and 3 to 5 cm long; annealed for several hours in high vacuum Cobalt samples consist of an orthogonal parallelepipe with dimensions Pure; polycrystalline wire from Johnson Matthey Co.; 1 mm in diam and 99.9984 pure; specimens prepared by electric-spark cutting from rod $^{\rm 0.6}$ cm long; annealed at 1313 K for 3 h at a pressure less than 4 x 10^{-5} PA; samples were demagnetized and the earth's field were 98.5-99.0% pure; electrolytic cobalt; data extracted from figure. 99.82 Co, 0.12 C, 0.008 M1, 0.004 Fe, 0.002 Cu, and 0.001 Mn and each; measured by a direct-heating method. Composition (weight percent), Specifications and Remarks The above specimen; data extracted from cooling curve. Same as above. Data Set 43. coilds. Designation Name and Spectmen 325-1020 293-1020 4.2-20.2 4.2-20.4 1433-1940 888-1673 Range, K 1.4-4.2 374-895 1.3-6.4 Temp. Method Used < U c æ ŧ ۵ Year 1956 1956 1965 1965 1963 1965 1964 1964 1964 Sudovtsov, A.I., and Redhakrishna, P. and Kovenskiy, I.I. and Chevemushkina, A.V. and Vasil'eva, R.P. Fraser, R.W., Evans, D.J.I., and Volkenshtein, N.V. Semenenko, E.E., Turov, V.D., and (a) (a) Ellutin, V.P., Samsonov, G.V. Fraser, et al. Maurakh, M.A. Olsën-Bär, M. Olsën-Bär, M. Mackiw, V.N. Nielsen, M. Ref. ż 88 88 8 82 82 8 8 8 6 Data *5 * š ż 2 ھ 80 •

ვ MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF COBALT TABLE 5.

* Not shown in figure.

compensated; data extracted from figure.

s
Composition (weight percent), Specifications and Remarks	99.97% pure; 0.951 cm in diam and 4.346 cm long; supplied by Metallurgy Division of the National Physical Laboratory; data obtained from figure; resistivity measured by passing a measured current both forward and reverse through the sample; and using thermocouples as potential leads.	Similar to the above specimen except heated to 973 K.	Similar to the above specimen except cooled from 973 to 293 K.	The above specimen heated up to 973 K again.	The above specimen except cooled from 973 to 293 K.	99.7 pure; samples in wire form; annealed in an intert gas atmosphere consists of 92% He and 8% H for 2 h at ${\rm vlSO}$ K above the Curie temperature; values calculated from reported resistivity ratio, $\rho(T)/\rho(T_C)=87.45\times10^{-6}$ R m taken from Data Set 16.	99.999 ⁺ pure, <0.0001 Ag, Al, Ca and Cu each, 0.0003 Fe and Si each, 0.0002 Mn and 0.0001 Mg; supplied by Koch-Light Laboratories Ltd., England; a non-compensated Thomson bridge is used; values from table.	99.998 ⁺ pure with major impurities of 0.002 C, 0.0001 to 0.02 0_2 , 0.004 N ₂ , and 0.001 H ₂ ; amorphous specimen with a cross section of $\sqrt{5} \times 10 \text{ mm}^2$; supplied by Koch Light Laboratories Ltd.; resistance measured by a standard four-terminal technique using thick silver lands evaporated on to the substrated prior to mounting in the ultrahild h vacuum system; a 0.03% Fe in gold-chronnel thermocouple from Johnson Matthey Co. was damped to the surface of the substrate for temperature measurement from 4 to 500 K.	99.9 ⁺ pure; in molten state in a vacuum induction furnace; values calculated from the reported equation $\rho(\mu\Lambda-cm) = \alpha T(^{\circ}C) + \beta$ with $\alpha = 0.0384$ and $\beta = 69.07$.	Cobalt whisker grown by the hydrogen reduction of CoBr ₂ at 673-773 K in a reducing atmosphere of argon; residual resistance ratio $R(295 \text{K})/R(4.2 \text{K}) = 388; data extracted from figure of R(T)/R(295 \text{K}) as function of square of temperature; reference value of \rho(295 \text{K}) = 5.8 \mu\Omega cm, taken from White and Woods, Phil. Trans. Roy. Soc., London, A251, 273, 1959; used to calculate resistivity.$	99.999 pure Co; 0.0250 N, 0.0190 O, <0.0010 C, <0.0003 S1, Mg and Fe each; determined by emission spectrograph and vacuum fusion analysis; samples connist of 0.025 cm thick strips cold rolled to 0.011 cm, cut to \sim 20 cm in length by 0.25 cm in width; supplied by Johnson Matthey Co.; the center of the hysteresis gap found at 690 K; resistivity was monitored by superimposing an ac voltage on the ramp and measuring differentially the ac voltage drop across the speciaen against an 0.010 R standard using a phase sensitive detertion; reproducibility of measurement 0.12.
Name and Specimen Designation	1							Bulk Co		Co DIM 20	Spectmen No. 13
Temp. Range, K	293-427	290-965	290-923	290-955	384-756	1032-1483	77-1673	273	1768-1898	1.1-4.2	299
Me thod Used	* *	A, +	A,+	A.+	A, +		+	+ * ^	ĸ		9
Year	1964	1964	1964	1964	1964	1969	1967	1972	1972 1977	1971	1973
Author (s)	Powell, R.W.	Powell, R.W.	Powell, R.W.	Powell, R.W.	Powell, R.W.	Schröder, K. and Giannuzzi, A.J.	Kierspe, W., Kohlhass, R., and Gonska, H.	Bennett, M.R. and Wright, J.G.	Onc. Y. and Yagi, T. Onc. Y.	Marker, D.L., Reichardt, J.W., and Coleman, R.V.	Pleves, J.T. and Bachmann, K.J.
 ¥	85	85	85	85	85	86	78	66	89 . 90	75	8
Data Set No.	10	11	12	13	14	15	16	11	18	19	20

Ē

···· ··· ··· ··· ···

61

e en el 🔸

K Set	Zo.	Author (s)	Үеаг	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
214	100	Plewes, J.T. and Bachmann, K.J.	1973	۵	299	Specimen No. 13	Similar to the above specimen except heated to 573 K for 46 h after cold rolled, representing a fully recovered structure.
22	10	Plewes, J.T. and Bachmann, K.J.	1973	Ð	299	Specimen No. 13	The above specimen after 100 heat cycles carried out in a diffusion- pumped vacuum system which could be evacuated to 1.33 x 10 ⁻⁵ PA.
234	100	Plewes, J.T. and Bachmann, K.J.	1973	۵	299	Specimen No. 11	Similar to the above specimen except only cold rolled.
244	100	Plewes, J.T. and Bachmenn, K.J.	1973	D	299	Specimen No. 11	The above specimen heated to 1073 K for 10 minutes representing a fully recrystallized structure.
25	100	Plewes, J.T. and Bachmann, K.J.	1973	۵	299	Specimen No. 11	The above specimen after 100 heat cycles carried out in a diffusion-pumped vacuum system which could be evacuated to 1.33×10^{-8} PA.
26	Q	Price, D.C. and Williams, G.	1973	>	4.2-292		99.9985% pure; dimensions of 10 cm x 0.2 cm x 0.15 cm; supplied by Johnson Matthey Co.; annealed in vacuo for 2 h at 1173 K and then quenched; ideal resistivity ρ_1 were reported from 22 to 292 K; data from table, uncorrected for thermal expansion; total resistivity calculated from data of ideal resistivity by the relation $\rho(T) = \rho_1(T) + \rho(4.2 \text{ K})$; temperatures stabilized and measured to better than 0.5%; area to length ratio determined to within 0.5%.
5	"	White, G.K. and Woods, S.B.	1957	U	4.2-286	Col. a	Pure; 0.0002 S1, <0.0005 Fe, \sim 0.0001 A1, and <0.0001 Mg and Cu each; by spectrographic analysis; rod specimen 5 to 8 cm long and 2 mm in diam; supplied by Johnson Matchey Co.; annealed in vacuum for \sim 2 h at 973 K; residual resistance ratio $p(295 K)/p(4.2 K) = 65.36$; total resistivity calculated using $p = p_1 + p_0$; ideal resistivity p_1 ex- tracted from figure; measurement error $\sim \pm 12$.
28	"	White, G.K. and Woods, S.B.	1957	G	4.2-279	Col. b	The above specimen remounted in a second cryostat and resistivity and thermal conductivity determined together; residual resistance ratio $p(295 \text{ K})/p(4.2 \text{ K}) = 64.52$.
29	101	Tsoukalas, I.A.	1974		273-1378		99.99 (nominal) pure; polycrystalline; dimension 1 x 5 x 0.1 cm ³ ; martensitic transformation at 660 K form hcp to fcc; values extracted from figure.
8	8	McLennan, J.C., Niven, C.D., and Wilhelm, J.O.	1928		2.5-293	Cobalt(aged)	Pure; supplied by Belga American Trading Corp., New York; cut into strip and annealed in vacuum for 4 h at a dull red heat; values ex- tracted from table.
31	\$	McLennan, J.C., et al.	1928		4.2-293	Cobalt (unaged)	Similar to the above specimen, unannealed.
32	102	Meissner, V.	1928		1.4-273	CoI (27)	Specimen annealed for 2.5 h at 600 K; 50 mm in length and 2.5 x 0.5 mm cross section; resistance ratio reported; reference value of $\rho(273) = 5.57 \ \mu\Omega$ cm, taken from Bridgman, P.W., Proc. Am. Acad. Arts Sci., 79, 149, 1940, used to calculate resistivity from resistance ratio.
Kot	shown	in figure.					

Composition (weight percent), Specifications and Remarks	Polycrystalline; ∿5 cm long, 0.025 cm diam; annealed, values ex from table.	Sample in sintered polycrystalline form; 0.5 mm in diam and 57.4 in length; specimen obtained from Heraeus, von A.E.G.; sample at at 773 K in vacuum for 2.5 h; measured by compensation method; tive resistance data reported; reference value of $\rho(273) = 5.57$ taken from Bridgman (Proc. Am. Acad. Arts Sci., <u>79</u> , 149, 1940), to calculate resistivity.	Pure; 0.05 Cr, 0.01 Mn and <0.05 Fe; dimension 12.5 mm in length 2.5 mm thick; obtained from Kahlb; sample melted in vacuum; mean by compensation method; reference value of $p(273) = 5.57 \mu\Omega$ cm, from Bridgman (Proc. Am. Acad. Arts Sci., 79, 149, 1940), used calculate resistivity.	99.998 pure; specimen in rod form 15 cm long and 0.5 cm in diam supplied by Koch Light Laboratories, United Kingdom; sample hea electric current; the potential drop across the length of the u temperature region was measured with a Tinsley ac/dc coordinate tentiometer type 4580; current through the sample determined by suring the potential difference across a non-inductive standard resistor type 660 of 0.001 Ω in series with the specimen; value tracted from graph.	Similar to the above specimen except contains a total impurity tration of about 0.001% of Si, Ni, Cu, Fe, Mg and Ag; sample su by Johnson Matthey Co.	99.7 pure; 3 mm in diam and 30 cm long; annealed in vacuum for at 1273, oven-cooled; measured in a vacuum of 4 x 10 ⁻⁴ mmHg; me ment error: 1-1.5% in resistivity and 0.1 K in temperature; mi of resistivity versus temperature reported to occur at 655 K up heating and 655 K upon cooling; values extracted from figure.	99.999 pure; 0.0002 Si, 0.0005 Fe, \sim 0.0001 Al, and <0.0001 Mg a wire specimen 0.05 mm in diam and about 6 to 8 cm long, from Jo Matthey Co. (JM9484); annealed in vacuum at 973 K; Debye temper reported to be 380 K; residual resistance ratio $R(295 K)/R(0 K)$ values calculated from reported ideal resistivity, extracted fr graph, and reported $\rho_{\sigma} = 0.062 \times 10^{-8}$ Gm from Table 1.	99.98 pure; electrolytic.
Name and Specimen Designation		Co 2	Co 3	Spectmen 1	Specimen 2		C 0 2	
Temp. Range, K	4.5,295	1.5-273	1.3-273	1158-1496	1213-1468	373-773	4.2-273	1923
Method Used	۷	•	†	+ -	8		U	6
Year	1972	1930	1930	1969	1969	1969	1959	1972
Author (s)	Horak, J.A. and Blewitt, T.H.	Meissner, W. and Voigt, B.	Meissner, W. and Voigt, B.	Jain, S.C., Narayan, V., and Goel, T.C.	Jain, S.C., et al.	Kirichenko, P.I.	White, C.K. and Woods, S.B.	levin, E.S.,
Ref.	103	104	104	105	105	106	71	6
						~	•	2

* Not shown in figure.

TABLE 5. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF COBALT Co (continued)

Dete				Method	Tent	Name and	
કે કે	2	Author (s)	Year	Used	Range, K	Specimen Designation	Composition (weight percent), Specifications and Remarks
7	2 110	Güntherodt, N.J., Hauser, E., Künzi, H.U., and Müller, R. Mueller, R.	1975 1976	×	1720-1854		99.999 pure from Johnson Matthey Co.; measured by a four probe method in which the sample material was enclosed in an alumina tube with four protrusion serving as current and potential contacts.
5	87	Seydel, U. and Fucke, W.	1977	+	1205-3108		99.99 pure, 0.0007 Fe, 0.0005 Si, 0.0003 Cu, 0.0002 Ag and Ni, 0.0001 Al, Ca, Mg, and Sn each, <0.0001 Bl, Cr, and Mn each; measured by an exploding wire technique; measurement error 4%; smoothed values from curve; values corrected for thermal expansion.
Ş	9	Laubitz, M.J. and Matsumura, T.	1973	۲	90-1700		99.999 pure, 0.00070 C, 0.00060 Ni, 0.00050 0 ₂ , 0.00016 Fe, 0.00010 K, 0.00008 N ₂ , 0.00007 Na, 0.00006 Ka, Cr, and Cu each, 0.00002 Ga and S each, 0.00001 P, 0.000007 CI, 0.00006 Ca, Cr, and Cu each, 0.00002 Ng, and 0.000008 Ag and Pd each (at.X), by semiquantitative mass spectrographic analysis; from Metals Research Ltd., England; material originally rod shape V2 cm in diam and 20 cm long; polycrystalline; annealed at 1500 K for 4 h in a vacuum of 5 x 10 ⁻⁵ Torr; cooled at 100 K hr ⁻¹ , except in the range 710 to 670 K, where it is cooled at 0.5 K hr ⁻¹ ; residual resistance ratio 140 ± 10; density 8.831 x 10 ³ kg m ⁻³ at 293 K; grain size V0.1 cm; specimen trimmed to a nominal diam of 2 cm and length of 20 cm with no machining of the region on which measurements were made; one specimen trimmed to a nominal diam of 2 cm and length of 20 cm vitth or machining of the region on which measurements were made; one specimen trimmed to a nominal diam of 2 cm and length no change in residual resistivity ratio, and in ice point resistivity were detected; the second specimen 1 201 a second specimen, 1 cm in diam and 10 cm long were cut from the first and measured from 90 to 370 K; no change in residual resistivity ratio unchanged; but speciment geometry is changed; monothed values from table, these values are reported to be averages in the temperature range where the two measurements overlap; values uncorrected for thermal expansion; values above 1300 K had been ad- justed by 40.8% by the authors to avoid discontinuity in resistivity values between the large and the small specimen; meaurement error reported 0.5%; smoothed values from table.
495	76	Laubitz, M.J. and Matsumwra, T.	£791	۷	680-710		The smaller of the above specimens, measured after the high temperature measurements; measured while heating.
45#	76	Laubitz, M.J. and Mataumuta, T.	1973	V	685-715		The above measured while cooling.
4	8	Vilkes, K.E.	1968	<	78-300		99.92 pure, 0.040 Fe, 0.012 Ni, 0.004 C, 0.001 Ca, Cu and Si each, 0.0008 S, 0.0003 Al and Mn each, 0.0002 Mg, and 0.0001 Pb; rod specimen 1.000 cm in diam and 10.05 cm long; supplied by Centre D'Information on Cobalt, Brussels, Belgium; density 8.805 x 10 ³ kg m ³ at 296 K; values from table; residual resistivity ratio measured by M.J. Laubitz and T. Matsumura, Can. J. Phys., $\underline{S1}(2)$, 1247, 1973, to be 31, and reported to change to 48 after being "carefully reannealed".

* Not shown in figure.

64

والمرجع بالقادي والأرقاب فالمنافق وأقدائهم والمحادث والمتعارفة

474 484 49 1	1	Author (s)	Year	Method Used	Temp. Range,K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
+8+ +6+	5	Loegel, B. and Gautier, F.	1973		6.8-79		"Pure cobalt," no other details reported; only temperature dependent part of resistivity reported.
1 67	1	Loegel, B. and Gautier, F.	1973		5.6-33		Similar to the above.
	6	zinov'yev, V.F., Krentsia, R.P., Perova, I.N., and Gel'd, P.V.	1968	А, Я	296-1730		99.95 pure; 0.2 mm thick, 8 mm wide and 8 mm long; ground from rolled stock; annealed at 1200 K for 7 h under a pressure of 1 x 10^{-5} mmHg; $\rho(288 \text{ K})/\rho(4.2 \text{ K}) = 86; \alpha^{-\beta}$ transition reported at 703 K; measured by potentiometric method below 1330 K, and by rotating field method above 1400 K; hysteresis at $\alpha^{-\beta}$ transition reported but resistivity values given for heating only; uncertainty in temperature measurement 10-15 degrees.
\$	6	Kita, T., Ohguchi, S., and Morita, Z.	1978	t	1658-1888		0.137 Fe, 0.09 Ni ₂ 0.017 Si, 0.012 Mn, 0.011 S, and 0.008 C; measured in a vacuum of 10 ⁴ Torr, with a four probe method in which the electrodes are of the same material as the specimen; data points are taken at temperatures in the following sequence: 1788, 1811, 1829, 1850, 1870, 1888, 1881, 1867, 1846, 1820, 1801, 1781, 1765, 1755, 1735, 1711, 1694, 1678 and 1658 K; values from table supplied by authors.
- 21*	93	Kita, Y., et al.	1978	+	1764-1895		Same as the above, a second meit; temperature sequence: 1795, 1809, 1823, 1843, 1863, 1878, 1895, 1883, 1869, 1854, 1836, 1819, 1801, 1782, and 1764 K.
52*	94	S ama rin, A.M.	1962	£	1767-2000		Measured by the rotating field method; apparatus calibrated with iron using resistivity value reported by R.W. Powell, Philos. Mag., 44, 772, 1953; resistivity value calculated from reported conductivity (1.12-0.228 x 10^{-3} T(C)) x 10^{8} Ω^{-1} ; upper temperature limit issued to be 2000 K.
53* I(8	Shimank, H.	1914	<	20.2-273		Wire specimen 1-2 m long; resistivity values calculated from reported R(T)/R(273 K) ratio, with $\rho(273$ K) taken to be 5.178 x 10^{-6} fm.
н 8	8	Thomas, J.G. and Mendoza, E.	1952		1.2,4.2		99.95 pure, from New Metals and Chemical Ltd., 0.13 mm in diam; drawn x -ray show hcp structure; resistivity value calculated from reported R(T)/R(273 K) with p(273 K) taken to be 5.178 x 10^{-6} fm.
55 I(8	Thomas, J.G. and Mendoza, E.	1952		0.06-4.2		Similar to the above except annealed for 3 h in vacuo at 1273 K; con- tains a small amount of fcc atructure.
		Freitoco 4a , E.					tains a small amount of icc structure.

And the second se

and the second second

* Not shown in figure.

S
COBALT
40
RESISTIVITY
ELECTRICAL
THE
ð
DATA
EXPERIMENTAL
TABLE 6.

[Temperature, T, K; Electrical Resistivity, p, 10^{-6} Ω m]

	Ċ	8	8*	*	R .	* .	m	*	ģ	3*	6	1 *	6	*6	. 00		. 4		4			,	و م	Š	7	1	2	*6		. 9	4	5*		8#	0	5#	L L	~	4 6	80			. *			• ••	. 0	5
٩	12 (cont	23.1	23.5	23.8	24.0	24.1	24.0	24.5	25.0	25.7	26.2	27.0	27.5	28.3	30.0		1.15		45.4		SET 13		9.0	7.3	10.5	14.7	22.0	23.3	25.6	26.7	27.1	27.7	27.8	27.8	28.0	28.0	27.5	27.7	27.5	27.8	28.1	28.6	29.1	20.7	30.5	37.9	43.8	47.1
F	DATA SET	644	650	655 2	100	666 (2)	1/9	. 686	694	705	713	724	732	742	767	805	852		576		NAIA		067	327	410	498	626	644	619	695	101	705	711	714	718	718	721	721	725	130	735	742	749	151	768	860	919	955
a	ET 10	6.46	6.27*	7.43	1.03	8.64	2.03	10.28	11.41	11.56		ET 11		6.45	8.19	12.66	17.71	77 75	C/.77	22.02	40.12	400.02	28.00	28.00	27.38	28.43	28.93	29.00*	30.05	31.43	34.33	38.74	44.36	47.16		ET 12		5.9	10.6	11.62	13.47	14.24	14.66	16.13	20.47	21.42	22.53	
T	DATA S	293	294	324	32/	306	4 65	399	424	427		DATA S		290	339	444	542	603	170					107	722	738	747	749	760	776	814	869	166	965		DATA S	}	290	401	435	476	490	505	526	596	613	633	
٩	ont.)	108.6	104.3	110.3	2.11	6	•		59.4	63.4	64.7	68.9	74.0	79.7	83.3	88.9	92.2		0 423	110	271200 0	0+T/00-0	0.06/151	0.087151	0.087162	0.087168	0.087176	0.087187*	0.087200*	0.087212	0.087223*	0.087238	0.087248*	0.087263*	0.087281*	0.087302	0.087337*	0.087355*	0.087381	0.087400*	0.087423*	0.087445*	0.087468*	0.087497#	0.087521	1		
Ŀ	DATA SET 7 (c	1765	1773	1868	194U		DAIA 351		888	939	986	1073	1188	1379	1478	1576	1673		DATA	NUTV	1 20	07.1	T.49	1.67	1.87	2.12	2.31	2.49	2.74	2.96	3.16	3.34	3.56	3.75	3.96	4.22	4.61	4.82	5.11	5.28	5.49	5.69	5.88	6.16	6.36	1		
d	ser 5	0.1499	0.1500	0.1501	1001.0	20110	PUCL-U	0.1504	0.1505	0.1506	0.1507	0.1507	0.1508	0.1511	0.1512	0.1519	0.1547	•		21	a a			11.7	13.3	15.6	16.8	18.0	18.9	19.8	20.6	21.8	24.3	25.8	27.1	28.6	30.3	31.8	34.6*	38.2	39.7	42.5		2	1	91.8	101.4	
F	DATA	4.16	98.4	5.22		01.0	70.0	1.24	7.92	8.54	9.08	9.54	10.15	10.83	11.56	12.43	20.38		DATA CP		476	100	160		496	529	546	580	592	612	630	649	690	712	733	752	764	789	815	851	870	895		DATA SET		1433	1685	
٩	(cont.)	50.0	53.7		C 130 1	0 313766	CC/717-0	0.212750*	0.212765*	0.212773	0.212817*	0.212815	0.212812*	0.212831*	0.212855	0.212868*	0.212893*	0.212912#	0 2129444	0 717044	044717.0	CBT 44	190		0.1578	0.1578	0.1576	0.1579	0.1581	0.1581	0.1581	0.1581	0.1581	0.1565	0.1566	0.1585	0.1589	0.1584	0.1595	0.1584	0.1585	0.1589	0.1594	0.1600	0.1604	0.1612	0.1622	
F	DATA SET 2	58 3	1020			17 1		1.61	1.78	1.99	2.22	2.36	2.60	2.80	3.19	3.38	3.57	1 77		0.4 1	07.4	1474	VIVA	:	4.17	4.96	5.24	5.86	6.52	6.99	7.41	7.78	8.21	8.61	90.08	10.50	11.29	11.66	12.26	12.40	13.35	14.11	14.88	16.08	16.75	18.85	20.22	
٩	1 1	6.3	8.0	8.6	7.21	14.8	0./T	20.2	22.5	24.2	25.7	27.0	28.2	29.2	29.4	30.9	32.5*	14.64	49 22	11 74	44.72			33./		ET 2		8.0	9.8	12.2	14.8	17.6	20.2	22.5	23.7	24.4	25.7	26.7	27.7	28.6	30.5	32.5	34.6	37.6	41.7	45.4		w in floure.
F	DATA SI	293	325.15	0/6	774	0/4	22	573	611	638	999	682	869	715	133	161	788	814	178		500		.010	1020		DATA SI		325.15	370	422	476	525	573	611	638	499	683	200	716	733	761	788	814	847	895	935		# Mor aho

Co (continued) EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF COBALT TABLE 6.

ţ.

ļ

					and the state of t				an and a statement of the state of the		
F	٩	-	٩	F	٩	F	a	+	٩	F	٩
DATA	SET 14	DATA SET	r 15(cont.)	DATA	SET 17	DATA S	ET 20	DATA SET	26(cont.)	DATA	SET 28
384	9.44	1428	89.72	273	5.6	299	6.90	131.8	1.7419	4.2	0.0907*
458	12.39	1455	91.04					141.9	1.9810*	12.91	0.0922
559	18.15	1458	91.21*	DATA	SET 18	DATA SI	ET 21*	156.3	2.3355	15.31	0.0933
5	21.05	1461	91.82*					171.8	2.7038	18.07	0.0958*
626 615	22.14*	1483	92.17	1768	126.478	299	6.25	182.0	2.9524*	21.53	0.0991
040 6 4 4		1111	26 76	29/1	047./2T			191.4	3.21/8	24-83	0.1048
808 9	00.62 1480 FC	NIN	2E1 10	1808	128.UI4	DATA S	ET 22	206.5	3.5/10	21.42	0.1122
599	24.02	"	V V	070T	120.702	100	. 71.	4.C12	4.236U	50.16	0621.0
667	24.004		2.65	1868	120.18	667	47.0	196	2102 5	19 05	0 1707
699	23.92*	223	3.84	1888	131.086	DATA SI	ET 23*	271.0	5.4120	53.95	0.2786
671	23.89	273	5.25	1898	131.470			292.4	6.1254*	63.10	0.3804
673	23.85*	323	6.81			299	6.91			68.55	0.4726
674	23.87*	373	8.52	DA	VTA SET 19			DATA	SET 27	76.38	0.6047
676	23.91*	423	10.50			DATA SI	ET 24*		ł	88.31	0.7970
677	24.02*	473	12.80	1.18	0.013658			4.2	0.0902	143.5	2.032
680	24.22	523	15.45	1.31	0.013668	299	6.48	11.56	0.0914	279.3	5.688
684	24.63*	573	18.38	1.39	0.013668			12.74	0.0921		
692	24.97	623	21.48	1.49	0.013675	DATA S	ET 25	12.88	*6160.0	DATA SI	ET 29
60/	26.16	673	24.72	1.60	0.013680			14.59	0.0926		
725	27.29	698	26.55	1.69	0.013684	299	6.58	15.49	0.0933*	273	7.1
734	28.00	723	28.00	1.78	0.013688			16.07	0.0943*	317	8.7
756	29.45	748	29.25	1.88	0.013693	DATA	SET 26	16.83	0.0942*	362	10.2
		773	30.65	1.97	0.013698			18.20	0.0958	479	15.5
DATA	ET 15	823	34.72	2.08	0.013705	4.2	0.1275	20.28	0.0974	549	18.7
		873	39.05	2.19	0.013711	22.1	0.1328	22.03	8660.0	668	26.4
1032	58.24	923	43.66	2.28	0.013715	25.2	0.1441	26.24	0.1088	684	26.8
1049	58.85	973	48.20	2.40	0.013732	27.9	0.1516	28.91	0.1172*	698	26.8
1074	60.87	1023	52.85	2.50	0.013728	31.8	0.1660	32.06	0.1295	711	26.8
1114	64.10	1073	57.92	2.59	0.013740	35.3	0.1788	34.91	0.1495*	745	28.7
5511	68.56	1123	62.95	2.69	0.013746	38.7	0.1965	37.84	0.1664	111	32.4
•	66.J0	1173	68.20	2.80	0.013758	43.1	0.2208	54.83	0.2972	815	35.3
1/11	c0.0/	1223	/3.48	2.89	0.013765	48.5	0.2662	59.70	0.3461	843	38.1
1711	76.60	5/7T	(0.4)	3.8	0.013//2	53.5	0.3203	64.27	0.4145	882	40.8
1755	10.07	C7CT	16.20	60°C	0.013/80	1.00	4C46.U	C4./0	0.4208	016	4.3.2
		0401 0401	17.08	91.E	0.013790	65.3	0.4726	74.30	0.5655	960	48.6
1200	75.71	13/5	8/.45	3.29	0.013797	11.6	0.5660	84.33	0.7359	1065	59.2
1205	80.03×	86FT	89.17	3.40	0.013810	73.3	0.5974*	91.62	0.8827	1159	69.1
6671	71.20	1423	90.60	3.50	0.013822	77.4	0.6547	105.9	1.184	1246	76.6
9161	83.86	1448	91.62	3.59	0.013834	81.3	0.7177	122.2	1.563	1315	82.4
1321	83.86*	1473	92.65	3.69	0.013843	84.7	0.7791*	162.6	2.506	1378	88.5
1340	86.05	1523	94.35	3.79	0.013859	89.7	0.8671*	187.5	3.159		
1370	87.45	1573	96.52	3.89	0.013867	93.8	0.9612*	205.6	3.646	DATA	SET 30
13/3	87.45	1623	98.17	3.99	0.013875	100.0	1.0694	224.4	4.136		
1041	66.65 00.02	1673	99.95	4.09	0.013888	105.2	1.1966*	243.2	4.640	2.5	0.45
767.	70.0%			4.15	0.013898	113.2	1.3298	264.9	5.314	4.2	0.45
474T	-71.40					122.2	1.5207	285.8	5.992	20.6	0.46

67

A STATISTICS IN STATISTICS

* Not shown in figure.

- 10 C H

ł

Co (continued)
OF COBALT
RESISTIVITY
ELECTRICAL
ON THE
DATA
EXPERIMENTAL
TABLE 6.

Image: product in the second state of the	F	٩	6-	٩	н	٩	F	٩		•d - d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DATA SET	<u>36(cont.)</u>	DATA	SET 41	DATA SET	43(cont.)	DATA SET	45(cont.)*	DATA SET	47(cont.)
138 77.4 173 9.4 900 9.2.9 9.2.0 2.4.30 9.0.0 9.2.9 2.4.30 9.0.0 9.2.9 2.4.30 9.0.0 9.2.9 2.4.30 9.0.0 9.2.9 2.4.30 9.0.0 9.2.9 2.4.30 9.0.0 9.2.9 2.4.30 9.0.0 9.2.9 2.4.30 9.0.0 9.2.0 2.4.30 9.0.0 9.2.0 2.4.30 9.0.0 9.2.0 2.4.30 9.0.0 9.2.0 2.4.30 9.0.0	1261	75.2	1720	95.8	800	32.056	690.8	24.786	41.1	0.0701
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1284	77.4	1746	94.8 of a	906 0001	40.377	691.0 691.4	24.561 24.481	44.1	0.0998
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1338	81.3	1765	97.8	1100	59.259	692.0	24.348	50.6	0.118
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1356	83.6	1769	109.3	1200	69.116	693.0	24.308	50.6	0.132
100 15.4 1136 116.1 1300 72.3 64.4 7.46 1430 86.1 115.3 116.0 77.3 66.0 24.463 1430 86.1 115.3 116.0 77.3 66.0 24.463 1440 89.1 115.3 116.3 116.0 77.3 66.0 24.463 1440 89.1 113.3 115.3 116.3 116.0 77.3 66.0 24.463 1133 85.3 113.3 113.3 113.3 113.3 113.3 113.3 114.3 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4 77.3 114.4	1372	83.6	1780	115.1	1250	73.995	694.0	24.348	78.6	0.507
[4,2] [6,3] [1,4] <th[1,4]< th=""> [1,4] <th< td=""><td>1407</td><td>85.4</td><td>1784</td><td>116.1</td><td>1300</td><td>78.78</td><td>694.8</td><td>24.467</td><td></td><td></td></th<></th[1,4]<>	1407	85.4	1784	116.1	1300	78.78	694.8	24.467		
1134 66.5 113.5 1500 91.37 66.0 24.653 51.14 71.5 1006 89.4 116.3 1100 97.65 70.2 24.793 54.65 1006 89.4 116.3 1100 97.65 70.2 24.793 54.65 1111 76.3 1105 71.2 69.8 25.316 71.5 1111 76.3 1105 71.2 69.4 55.95 100.0 25.316 71.5 1111 85.3 115 91.9 69.4 55.95 100.1 25.366 81.1 1112 81.3 110.3 71.4 700.1 25.366 81.1 11.6 1112 81.3 110.3 110.3 111.4 700.1 25.366 81.1 11.6 1112 81.3 110.3 111.6 701.1 26.32 77.46 25.366 81.1 1113 81.3 100.3 55.493 70.1 27.28 22	1423	86.3	1811	114.3	1400	87.17	696.0	24.493	DAT/	SET 48*
1470 88.1 184.4 115.3 1500 97.65 70.2 2.4.737 5.4 1066 89.2 16.3 1100 77.62 25.114 77.50 25.114 77.50 5.114 77.50 5.114 77.50 5.114 77.50 5.214 77.50 5.214 77.50 5.214 77.50 5.214 77.50 5.214 77.50 5.214 77.50 5.214 77.50 5.214 77.50 5.216 77.5 17.5	1434	86.5*	1828	115.3	1500	91.37	698.0	24.625		ĺ
1066 99.6* 155 16.3 1700 97.62 703.0 25.114 77.5 MA SET J MA SET J MA SET 42 MA SET 44 700.0 25.146 77.5 MA SET J 1303 73.2 693.4 25.213 130.0 7.5.66 8.1 1121 76.3 1327 82.4 693.2 25.493 7.6.6 8.1 1121 76.3 91.3 1472 82.4 693.2 25.493 7.1.4 0.653 111.5 1129 81.0 25.1 100.1 26.632 27.3.4 7.5.66 8.1 1129 81.0 27.5 65.32 27.44 103.2 6.17 27.44 27.4 27.4 1129 81.0 27.6 27.5 27.44 27.5 27.4 27.4 27.4 27.4 27.4 27.4 27.5 1120 121.2 70.1 26.52 27.44 27.4 27.4 <th27.2< th=""> <th27.2< th=""> <th27.2< th=""></th27.2<></th27.2<></th27.2<>	1470	88.1	1844	115.3	1600	94.86	700.2	24.757	5.61	0.00018
1066 09.2 MAX SET 21 MAX SET 22 MAX SET 24 713 MAX SET 31 MAX SET 42 MAX SET 42 MAX SET 44 700.0 25.144 77.4 1212 7.13 7.13 7.13 7.13 7.13 7.14 7.15.4 7.366 7.14 1212 7.13 7.13 7.13 681.8 7.5.493 7.14 7.15.4 7.366 7.15 1223 7.13 1173 7.13 681.8 7.5.493 7.14 7.15.4 7.166 7.15 1123 85.1 1173 114.7 700.1 2.6.493 7.14 7.15.4 7.156 1123 81.0 7.14 700.1 2.6.473 7.13.2 7.14 7.04 7.14 <td>1488</td> <td>89.6*</td> <td>1854</td> <td>116.3</td> <td>1700</td> <td>97.62</td> <td>702.0</td> <td>24.903</td> <td>6.44</td> <td>0.00054</td>	1488	89.6*	1854	116.3	1700	97.62	702.0	24.903	6.44	0.00054
MAK SET 3 MAK SET 42 MAK SET 42 MAK SET 42 MAK SET 44 77.4 52.546 77.5 1212 79.1 1227 92.1 1227 92.4 699.8 52.346 91.9 1224 85.5 1157 1227 85.4 100.0 55.246 84.1 1224 85.5 1163 10.3 85.493 77.44 0.655 118.3 1123 85.5 1163 100.8 699.1 56.493 77.46 0.655 118.3 1123 86.3 10.3 56.793 21.44 70.3 56.793 21.33 21.84 1133 86.30 21.3 118.7 70.11 56.835 21.44 21.56 22.44 21.56 22.44 21.57 22.44 21.56 22.44 21.57 22.44 21.56 22.44 22.46 22.46 22.46 22.46 22.44 22.44 22.44 22.44 22.44 22.44 22.44 22.44 22.44	1496	89.2					705.0	25.114	7.40	0.00065
MAX SET 31 MAX SET 31 MAX SET 31 121 6.1 25.395 DAX E_{11} 25.966 B_{11} 1222 79.1 1327 82.4 99.7 25.395 DAX 81.4 9.5 1222 85.5 1561 99.7 56.97 56.939 77.44 0.655 21.7 1373 86.5 1651 10.7 100.3 690.7 26.999 77.44 0.655 21.7 1427 91.1 116.7 70.11 26.955 21.7 21.2 21.7 1427 21.96 117.0 70.11 26.955 27.2 22.2 2			DATA	SET 42	DATA	SET 44*	707.0	25.246	7.57	0.00083
1217 1205 73.2 619.8 25.32 MAA SET 46 91.3 92.3 93.4 94.4	DATA S	SET 37					715.4	25.866	8.13	0.00062
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1205	73.2	679.8	25.212			8.51	0.00079
I242 79.1 I452 89.7 688.2 25.86 77.8 0.65 11.1 11294 82.5 165 97.9 56.59 17.8 0.65 12.1 11295 86.8 1763 114.7 700.8 699.1 26.559 12.3 5.23* 23.1 1467 91.1 118.7 701.1 26.652 27.32 5.23* 23.1 1468 92.1 118.7 701.1 26.632 27.34 23.13 21.6 1468 21.1 118.7 701.1 26.825 23.92 10.4* 31.2 1461 118.7 701.3 26.932 23.4 31.4 31.4 7 22.50 23.4 13.3 703.5 24.4 31.4 32.4 7 22.50 703.5 26.925 74.4 0.0033 32.4 7 22.55 704.5 26.463 77.41 0.0033 32.4 7 22.55	1213	76.3	1327	82.4	684.8	25.595	DATA :	SET 46	9.56	0.0001
1284 82.5 1561 93.9 696.7 26.493 77.84 0.655 18.1 1172 88.5 1653 10.6 114.7 700.3 26.744 273.2 5.23* 23.1 1187 91.1 116.3 106.3 106.3 106.3 56.599 114.7 700.3 26.744 273.2 5.23* 23.1 1187 91.1 118.7 700.3 26.744 273.2 5.23* 23.1 118.7 701.7 26.959 120.7 701.7 26.955 7.3.2 23.1 23.1 117.0 701.7 26.955 703.5 26.955 7.4 23.2 23.2 23.1 117.1 28.0 2862 123.4 703.5 26.943 24.4 31.6 30.4 7 28.50 28.64 26.43 26.64 24.4 31.6 30.4 77.3 28.50 28.64 26.43 26.64 26.43 32.4 7	1242	1.97	1452	89.7	688.2	25.846			11.5	0.00127
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1284	82.5	1561	93.9	696.7	26.493	77.84	0.655	18.3	0.00368
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1323	85.5	1675	97.8	647.9	26.599	194.4	3.158	21.0	0.00512
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6/E1	88.8	1763	100.8	1.999	26.652	273.2	5.23*	22.0	0.00604
166 92.7 199 117.0 701.1 26.923 239.7 6.02* 24.7 373 15.00 2395 117.0 701.1 26.929 299.7 6.02* 24.3 373 15.70 2442 123.9 170.1 26.942 7 9.0 6.02* 24.4 30.4 373 15.70 2393 123.6 703.9 26.942 7 9.0 6.02* 30.4 573 15.70 286 123.6 703.9 26.407 7 9.0 6.07* 30.4 573 26.107 703.5 26.407 7.5.50 299.0 6.07* 30.4 773 28.50 303 129.3 706.0 25.763 6.75 0.000357 9.0 7 26.107 7.41 0.000357 9.0 9.0 9.0 766 1.512 90 0.74 7.64 0.000357 9.0 126 1.512 100.0 <	1427	1.19	1763	114.7	2007	26.744	273.2	5.23*	23.1	0.00801
DATA SET 38 2131 118.7 701.7 26.955 299.7 6.03* 21.3 373 8.00 2344 122.2 703.1 26.955 7 0.0^{+} 23.4 373 12.60 236 123.6 703.1 26.955 7 0.0^{+} 23.4 573 12.60 2384 127.2 703.1 26.955 7 0.0^{+} 23.4 733 15.70 2869 127.2 703.3 26.478 0.0^{+} 24.7 773 28.50 706.0 25.6478 76.478 D^{+} 0^{-} 0^{-} 773 28.50 706.1 25.6407 7.41 0.000357 296 973 28.6 706.0 25.6407 7.41 0.000357 296 9706.0 25.6407 7.41 7.06.0 25.6407 10.07 296 971 121.2 706.1 25.650 7.94 0.000033 395 16.1	1468	92.7	1959	117.0	701.1	26.823	273.2	5.26#	24.7	0.00923
Mrt SET 38 2295 120.1 703.5 56.95 29.7 6.00* 30.1 773 12.60 2584 123.9 703.5 56.955 7			1112	118.7	201.7	26.876	299.0	6.02*	28.4	0.0196
Mit Sec Sec <td>DATA</td> <td>SET 38</td> <td>2295</td> <td>120.7</td> <td>707.3</td> <td>26.929</td> <td>299.7</td> <td>6.04*</td> <td>30.4</td> <td>0.0273</td>	DATA	SET 38	2295	120.7	707.3	26.929	299.7	6.04*	30.4	0.0273
373 8.00 236 12.6 703.5 5.942 T $p - p_0$ T 773 12.60 2718 125.6 703.5 26.478 DATA SET 4/2 $p - p_0$ T $p - p_0$ T 773 12.60 2718 125.6 703.5 26.107 6.75 0.000357 296 773 28.50 3057 129.3 706.6 25.550 7.41 0.000357 296 7 4.2 0.062 3057 129.3 706.4 25.550 7.41 0.000357 296 4.2 0.062 1.5112 90 0.744 710.0 25.510 9.56 0.000133 355 126 1.5112 90 0.744 710.0 25.497 10.7 0.00133 355 126 2.3112 100 0.354 704.4 0.00133 355 126 2.312 90 0.744 710.0 25.497 10.7 0.00133			2442	122.2	703.1	26.955			32.6	0.0314
473 12.60 2718 12.56 703.9 26.478 DATA SET 4/* DATA 773 15.70 2869 127.2 704.5 26.478 DATA SET 4/* DATA 773 15.70 2869 127.2 704.5 26.478 DATA DATA 773 28.50 305 129.3 706.4 25.630 7.41 0.000357 296 77.1 28.50 306 129.3 706.4 25.630 7.41 0.000357 296 4.2 0.662 25.550 704.0 0.000357 296 316 126 1.512 90 0.744 710.0 25.497 10.7 0.000383 366 126 2.312 100 0.939 10.7 25.497 10.7 0.000133 367 126 2.312 100.0 25.497 10.7 0.000133 366 126 2.312 100.0 25.497 10.7 0.00113 410	373	8.00	2584	123.9	703.5	26.942	T	0 - 0		
573 15.70 2869 127.2 704.5 26.478 DATA SET 47* DATA 773 28.50 2982 127.2 704.5 26.478 DATA SET 47* DATA 773 28.50 3057 129.3 706.0 25.763 6.75 0.000357 296 773 28.50 3108 129.8 706.0 25.550 7.44 0.000357 296 4.2 0.062 DATA SET 43 707.2 25.550 7.44 0.000351 335 4.2 0.062 1.512 90 0.744 710.0 25.497 100.0 0.000381 335 126 1.512 90 0.744 710.0 25.497 100.0 0.000381 366 126 1.512 10 0.744 710.0 25.497 100.0 0.000181 366 128 1.512 10 0.744 710.0 25.497 100.7 0.000181 361 183 2.862	473	12.60	2718	125.6	703.9	26.862	I	.	T	٩
7/7 28.50 2982 128.4 705.3 26.107 6.75 0.000357 296 177 28.50 3057 129.3 706.0 25.5630 7.41 0.000357 296 126 $1.29.8$ 706.4 25.530 7.41 0.000357 296 4.2 0.062 90 774 707.2 25.550 7.41 0.000321 336 4.2 0.062 90 0.744 710.0 25.497 10.0 0.000984 366 126 1.512 90 0.744 710.0 25.497 10.7 0.000984 366 126 2.312 100 0.939 1.461 $D.7A$ 710.0 25.497 10.7 0.000984 366 126 2.312 1261 $D.7A$ 710.0 25.497 10.7 0.000113 410 190 2.312 1261 $D.25.452$ 0.0000984 <td< td=""><td>572</td><td>15.70</td><td>2869</td><td>127.2</td><td>704.5</td><td>26.478</td><td>DATA</td><td>SET 47*</td><td></td><td>L</td></td<>	572	15.70	2869	127.2	704.5	26.478	DATA	SET 47*		L
773 28.50 3057 129.3 706.0 25.763 6.75 0.000357 296 DATA SET 39 DATA SET 39 306 129.8 706.4 25.630 7.41 0.000357 296 4.2 DATA SET 39 DATA SET 43 706.4 25.550 7.41 0.000357 296 4.2 D .1062 DATA SET 43 706.0 25.550 7.41 0.000383 335 4.2 D .062 D .744 710.0 25.497 10.7 0.000983 355 126 1 .312 90 0 .744 710.0 25.497 10.7 0.000188 366 183 2 .862 12.61 D .747 710.0 25.497 10.7 0.00188 366 183 2 .862 12.61 D .744 710.0 25.497 10.7 0.00188 366 190 3 .214 6 .84.6 2 .5.497 10.7 0.00188 376 190 4 .4062	573	22.50	2007	128 6	502	26.107			DATA SF	т 49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1041			101-07	26.2	0 000167		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		00.02	1000	129.5	0.00/	co/.cz		100000 0	200	
MAX SET 39 MAX SET 43 $0/1.2$ $2.5.50$ 1.34 0.000221 530 4.2 0.062 90 0.744 70.6 25.510 9.56 0.000983 355 126 1.512 90 0.744 710.0 25.497 10.7 0.000984 366 183 2.312 100 0.939 0.744 710.0 25.497 10.7 0.000984 366 190 3.052 125 1.461 $0.708.6$ 25.497 11.0 0.00161 556 230 3.052 125 1.461 $DATA$ SET $45*$ 12.6 0.00161 578 230 4.0022 25.018 0.542 0.516 0.00186 578 244 4.0022 250 4.527 685.4 25.515 0.00133 648 273 5.182 400 9.542 688.4 25.542 23.6 0.00133 677 <			2102	8.41I	100.4	050.02	14.7	1000000	067	
4.2 0.062 DATA SET 43 708.0 25.50 9.56 0.000963 550 126 1.512 90 0.744 710.0 25.497 10.0 0.000964 366 163 2.312 90 0.744 710.0 25.497 10.7 0.000964 366 163 2.312 100 0.939 0.744 710.0 25.497 10.7 0.000964 366 190 3.052 125 1.461 $DATA$ SET $45*$ 11.0 0.00161 556 230 4.062 2.018 $DATA$ SET $45*$ 12.6 0.00161 556 230 4.062 2.018 0.74 0.00186 578 244 4.062 2.500 4.527 685.4 25.515 0.00783 677 250 $4.982*$ 300 9.595 686.4 25.542 23.6 0.00173 648 273 5.182 300 9.595 688.4 25.545 20.7	DATA	SET 39			7.10/	044.42	+6./	170000.0	000	0 0 0
4.2 0.062 708.8 25.497 10.0 0.00094 366 126 1.512 90 0.744 710.0 25.497 10.0 0.000184 366 163 2.312 100 0.939 $DATA$ SET 45* 11.0 0.00108 391 163 2.862 125 1.461 $DATA$ SET 45* 12.6 0.00118 556 190 3.052 125 1.461 $DATA$ SET 45* 12.6 0.00186 578 230 4.062 2.018 0.546 25.516 15.5 0.00186 578 230 4.582* 300 5.995 686.4 25.515 21.5 0.00783 648 250 4.582* 300 5.995 686.4 25.515 27.1 0.00783 677 250 4.582* 5.995 686.4 25.515 27.1 0.00783 677 273 5.182 400 9.542 28.515 27.1 0.00783 677 273 5.182 5.097 689.4 25.515 <td></td> <td></td> <td>DATA</td> <td>SET 43</td> <td>708.0</td> <td>25.5U</td> <td>99</td> <td>0.000983</td> <td>5</td> <td>4.4</td>			DATA	SET 43	708.0	25.5 U	99	0.000983	5	4.4
126 1.512 90 0.744 710.0 25.497 10.7 0.00108 391 163 2.312 100 0.939 $DATA SET 45^{4}$ 11.0 0.00113 410 180 2.362 125 1.461 $DATA SET 45^{4}$ 11.0 0.00161 556 190 3.052 125 1.461 $DATA SET 45^{4}$ 12.6 0.00161 556 230 4.062 200 3.214 684.6 25.515 14.2 0.00181 556 234 4.402 250 4.525 685.4 25.515 21.5 0.00135 647 250 4.582* 300 3.214 686.4 25.515 21.5 0.00135 647 273 5.182 300 5.995 686.4 25.515 21.1 0.0117 736 273 5.182 400 9.542 689.4 25.515 21.1 0.0125 795 273 5.182 500 14.118 689.4 25.462 29.7 0.0243 912	4.2	0.062			708.8	25.497	10.0	0.000984	366	11.0
163 2.312 100 0.939 \mathbf{MTA} SET 45^{\bullet} 11.0 0.00113 410 183 2.862 125 1.461 \mathbf{DATA} SET 45^{\bullet} 11.0 0.00161 556 190 3.052 125 1.461 \mathbf{DATA} SET 45^{\bullet} 12.6 0.00161 556 230 4.062 200 3.214 684.6 25.516 15.5 0.00135 648 244 4.402 250 4.527 685.4 25.515 21.5 0.00135 678 250 4.582* 300 5.957 685.4 25.515 21.5 0.00173 677 273 5.182 400 9.542 687.6 25.515 27.1 0.0117 736 273 5.182 400 9.542 689.4 25.462 27.1 0.0155 795 273 5.182 400 9.542 689.4 25.462 29.7 0.0239 677 273 5.182 400 9.542 689.4 25.462 29.7 0.0243 912	126	1.512	8	0.744	710.0	25.497	10.7	0.00108	391	11.7
183 2.862 125 1.461 DATA SET 45^{4} 12.6 0.00161 556 190 3.052 150 2.018 $$	163	2.312	100	0.939			11.0	0.00113	410	12.5
190 1.052 150 2.018 14.2 0.00186 578 230 4.062 200 3.214 684.6 25.516 15.5 0.00135 648 244 4.402 3.214 685.4 25.515 15.5 0.00783 648 250 4.527 685.4 25.515 21.5 0.00783 648 2750 4.527 685.4 25.515 21.5 0.00783 677 270 5.182 400 9.542 687.4 25.515 27.1 0.0117 736 271 5.182 600 9.542 687.4 25.515 27.1 0.0117 736 273 5.182 600 19.872 689.4 25.462 29.7 0.0243 912 2600 19.872 689.4 25.289 34.2 0.0389 1011 273 100 26.990 689.8 25.289 34.2 0.0389 1011 201 26.	183	2.862	125	1.461	DATA	SET 45*	12.6	0.00161	556	19.7
230 4.062 200 3.214 684.6 25.516 15.5 0.00335 648 244 4.402 250 4.527 685.4 25.515 21.5 0.00783 677 250 4.582* 300 5.995 686.4 25.542 23.6 0.0117 736 273 5.182 400 9.542 687.6 25.515 21.1 0.0117 736 273 5.182 400 9.542 687.6 25.515 27.1 0.0155 795 271 5.182 400 9.542 688.4 25.515 27.1 0.0155 795 273 5.182 400 9.542 689.4 25.515 27.1 0.0155 795 271 5.182 500 14.118 689.4 25.462 29.7 0.0243 912 271 5.182 5690 689.4 25.589 34.2 0.0243 912 271 736 736 27.182 736 27.1 0.02399 1011 771 700 </td <td>190</td> <td>3.052</td> <td>150</td> <td>2.018</td> <td></td> <td></td> <td>14.2</td> <td>0.00186</td> <td>578</td> <td>18.9</td>	190	3.052	150	2.018			14.2	0.00186	578	18.9
244 4.402 250 4.527 685.4 25.515 21.5 0.00783 677 250 4.582* 300 5.995 686.4 25.542 23.6 0.0117 736 273 5.182 400 9.542 687.6 25.515 27.1 0.0155 795 273 5.182 400 9.542 687.6 25.515 27.1 0.0155 795 200 14.118 688.4 25.515 27.1 0.0243 912 DATA SET 40* 600 19.872 689.4 25.462 29.7 0.0389 1011 00 26.590 689.4 25.289 34.2 0.0469 1114 1001 26.590 569.3 569.3 26.5 26.50 569.4 25.289 36.6 0.460 1114	230	4.062	200	3.214	684.6	25.516	15.5	0.00335	648	23.3
250 4.582* 300 5.995 686.4 25.542 23.6 0.0117 736 273 5.182 400 9.542 687.6 25.515 27.1 0.0155 795 273 5.182 400 9.542 688.4 25.515 27.1 0.0155 795 274 5.182 500 14.118 688.4 25.462 29.7 0.0243 912 275 500 14.118 689.4 25.482 34.2 0.0339 1011 273 103 10.1 25.182 34.2 0.0469 1114 273 103 26.590 689.8 25.289 36.6 0.0469 1114	244	4.402	250	4.527	685.4	25.515	21.5	0.00783	677	26.5
273 5.182 400 9.542 687.6 25.515 27.1 0.0155 795 DATA SET 40* 600 14.118 688.4 25.462 29.7 0.0243 912 DATA SET 40* 600 19.872 689.4 25.382 34.2 0.0389 1011 000 26.590 689.8 25.289 34.2 0.0469 1114 1031 1031 26.590 689.8 25.289 36.6 0.0469 1114	250	4.582*	000	5.995	686.4	25.542	23.6	0.0117	736	26.9
DATA SET 40* 500 14,118 688.4 25,462 29,7 0.0243 912 DATA SET 40* 600 19,872 689.4 25,382 34.2 0.0389 1011 Tool 26,590 689.8 25,289 36.6 0.0469 1114 Tool 700 26,590 689.8 25,289 36.6 0.0469 1114	273	5.182	400	9.542	687.6	25.515	27.1	0.0155	795	11.4
DATA SET 40* 600 19.872 689.4 25.382 34.2 0.0389 1011 10.1 700 26.590 689.8 25.289 36.6 0.0469 1114 10.1 700 26.590 689.8 25.289 36.6 0.0469 1114			005	811.41	688 4	25.462	29.7	0.0243	619	43.1
Total Total <thtotal< th=""> Total <tht< td=""><td>DATA SF</td><td>T 40#</td><td></td><td>10 877</td><td>680 4</td><td>201.22</td><td>14.7</td><td>0.0389</td><td>1101</td><td>0 15</td></tht<></thtotal<>	DATA SF	T 40#		10 877	680 4	201.22	14.7	0.0389	1101	0 15
			000	26.500	680 B	25. 289	36-65	0.0469	1114	58.2
	1923	109	102	25.015	690.2	25.051	38.3	0.0567	1176	65.0

* Not shown in figure.

C COB	EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVIT EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVIT 25 56 56 56 56 56 57 56 58 58 58 58 58 58 58 58 58 58 58 58 58
-------	--

سي ذم طعيد في

* Not shown in figure.

3.3. Iron

The electrical resistivity of iron has been studied extensively. There are 223 sets of experimental data available for iron specimens of purity 99.8% or higher. The information on specimen characterization and measurement condition for each of the data sets is given in table 8. The data are tabulated in table 9 and shown partially in figures 5 and 6.

Because of magnetic effects, the residual resistivity of iron has been studied with intense interest. Berger and De Vroomen [111] suggested that the residual resistivity measured in the absence of an applied magnetic field is not an indication of the purity of an iron specimen. Fujii and Morimoto [112] suggested that the magnetic contribution to the residual resistivity is 0.02 x $10^{-8} \Omega$ m; a value also agreed upon by Volkenshteyn and Yakina [113]. Thus, even for zone-refined iron, the residual resistance ratio, RRR, has low values of \lesssim 400 as compared with values of a few thousand or even higher for other pure metals. The more recent results of Takaki and Igaki [114] seem to indicate that even for iron that has been highly purified by anion exchange separation, floating-zone melting and hydrogen treatment, the residual resistance ratio has a limiting value of about 500. It is worth noting, however, that the quantity RRR_H, the residual resistance ratio obtained as the minimum value from resistivity measurement as a function of an applied longitudinal magnetic field, of some of their specimens are greater than 2000. The same group of authors [115] later reported RRR_H values of over 10,000 on specimens that had been electrolytically polished to remove silicon contamination on the surface layer (of thickness $\sim 100 \ \mu\text{m}$). The resistivity of iron is also dependent on the density of the measuring current [114]. The results of Takaki and Igaki [114] on specimens of various purity showed that the current density dependence is negligible for specimens having RRR (or RRR_H) values of ≤ 100 . For RRR values higher than 200, or RRR_{μ} values of $\gtrsim 1000$, the resistivity may still be increasing with measuring current at current density values of $>6 \times 10^6$ A m⁻². The limiting RRR value of 500 quoted above was for a measuring current density of $\sqrt{5} \times 10^5$ A m⁻² [114]. This result appears to agree with that of Glaeser et al. [116], even though the magnetic field and current density dependences reported by these two works show some discrepancies. The recommended value for the electrical resistivity of iron at the temperature of 1 K is based on these

SHOLIG MAR MAR-HOT 71

references and subject to the condition that the measuring current is <1 x 10^{6} A m⁻² in the absence of an applied magnetic field. It should represent the value for the electrical resistivity of iron purified by modern electronbeam zone-refining techniques.

The electrical resistivity of iron is dependent on other factors. The most notable factors are the external magnetic field and the magnetic domain structure of the specimen itself. The effects of the former have been investigated mostly at 4 K [112,116-120], and those of the latter have been investigated chiefly for single crystal whisker specimens [121-125]. These effects, together with the effect of the measuring current, are inter-related and are not fully investigated. A resolution of these effects is clearly beyond the scope of this work. Hence, only the conditions "in the absence of an external applied magnetic field" and "with a measuring current of <1 x 10⁶ A m⁻²" are specified. The latter condition is chosen such that the (transverse) magneto-resistance due to the self-induction of the measuring current would not adversely affect the resistivity value.

The electrical resistivity of iron at low temperatures has been reported to contain a T^2 component; see, for example, White and Woods [21], Volkenshtein and Yakina [113], Semenenko and Sudovtsov [126], Fert and Campbell [127], Price and Williams [80], and Janos et al. [128]. However, Kondorskii et al. [129] reported $T^{1.5}$ and T^5 components. More recently, Isshiki and Igaki [115] reported that the temperature dependent part of the resistivity, when measured in a longitudinal magnetic field of 60 K A m⁻¹, can be fitted to a T^2 term and a Bloch-Grüneisen term with $\theta_R = 467$ K for temperatures 1 to 250 K.

A similar analysis [115] on the data of Kemp et al. [130] (data set 31), Kemp et al. [131] (data set 11), White and Woods [21] (data set 86), Fert and Campbell [127] (data set 119), Schwerer et al. [132] (data set 107), Volkenshtein and Yakina [113] (data set 209), and of Hust and Giarratano [133] (data set 47) indicates that, even without an applied longitudinal magnetic field, the electrical resistivity of iron can be represented by eq (8) for temperatures up to about 100 K. The values of A and θ_R in the Bloch-Grüneisen term were taken to be 58.1 x 10⁻⁸ Ω m and 467 K [115], respectively. The coefficient of the quadratic term varies approximately from 1.1 to 3.4 x 10⁻¹³ Ω m K⁻². There seems to be some correlation between the values of the coefficient and the residual resistivities, i.e., a specimen with a low residual resistivity seems

to have a low coefficient (data sets 11, 86, 209) and vice versa (data sets 31. 47). However, with only a few data sets available, a definite relationship between the residual resistivity and the coefficient in the quadratic term cannot be established. Furthermore, the reported T^2 dependence of the electrical resistivity extends probably to temperatures below 1 K [126], whereas most of the authors report data to 2 K or higher. One way of circumventing this problem is to assume that the resistivity can be fitted to a residual term plus a quadratic term below 20 K (the T⁵ or the Bloch-Grüneisen term is negligible compared with the other two terms at these temperatures), and the residual term, taken to be the value at 1 K, is obtained by extrapolation. The recommended values for the electrical resistivity of iron below 100 K are obtained by this procedure. The values of the quantities A and θ are taken to be the same as those given by Isshiki and Igaki [115], i.e., 58.1 x 10^{-8} Ω m and 467 K, respectively. The value of the coefficient of the T^2 term is 1.3 x $10^{-13} \,\Omega$ m K⁻². This was obtained both by a graphical method where the logarithm of the quantity

$$\left(\rho_{\text{measured}} - \rho_0 - A\left(\frac{T}{\theta_R}\right)^5 \int_0^{\theta_R/T} \frac{x^5 e^X}{(e^X - 1)^5} dx\right)$$

is plotted against log T, and also by numerically fitting the same quantity to a quadratic function in temperature. This value is in agreement with that suggested by White and Woods [21], but is somewhat below the value of 2.2 x $10^{-13} \Omega \text{m K}^{-2}$ given by Isshiki and Igaki [115] for their highly purified specimens measured in an applied magnetic field of 60 KAm⁻¹.

At temperatures above ~ 100 K, there is a slight change in the temperature dependence of the electrical resistivity. A log-log plot of the quantity

$$\rho_{\text{measured}} - \rho_0 - A \left(\frac{T}{\theta_R}\right)^5 \int_0^{\theta_R/T} \frac{x^5 e^x}{(e^x - 1)^2} dx$$

against T for the data of White and Woods [21] (data set 86), Richter and Kohlhaas [134] (data set 43), Moore et al. [135] (data set 17), Fulkerson et al. [136] (data set 16), Hust and Giarratano [133] (data set 47), Kohlhaas and Richter [137] (data set 34), and of Dewar and Fleming [138] (data set 53) shows a decrease from the T^2 line starting at \sim 100 K. This departure from the T^2 line is at a maximum of about 0.05 x $10^{-8} \Omega m$ at \sim 140 K. At higher temperature,

the temperature dependence becomes stronger, with a temperature dependence that approaches a T^3 function. It is interesting to note that the same plot on the data of Kemp et al. [130] (data set 31) shows a slight increase at \sim 100 K. It is not obvious whether this behavior is purely a magnetic effect or an impurity effect. The specimens of Isshiki and Igaki [115] (data sets 219-223) are supposed to be purged of metallic impurities and to contain approximately 0.001 at.% C, 0.0007 at.% O, and <0.0001 at.% N, whereas the specimen of White and Woods [21] (data set 86) contains about 0.03% of mostly metallic impurities. The electrolytic iron specimen of Hust and Giarratano [133] (data set 47) contains about 0.1% also of mostly metallic impurities. The specimen of Moore et al. [139] (data set 15) contains $\leq 0.01\%$ Ni, $\leq 0.01\%$ Si, and lesser amounts of other impurities, and the specimen of Fulkerson et al. [136] (data set 16) contains <0.02% Si, 0.014% C, <0.01% Ni, and lesser amounts of other impurities. On the other hand, the magnetoresistance of iron is positive at room temperatures (see, for example, Kornetzki [140], Schindler and La Roy [118]), and negative at helium temperatures (see, for example, Fujii and Morimoto [112], Glaeser et al. [116], and Arajs et al. [119]). From the only available data by Shirakawa [141] and by Matuyama [142] on electrolytic iron at intermediate temperatures, the magnetoresistance of iron changes sign at \sim 77 K. For the lack of definite conclusion, this behavior is ignored at the present, and the resistivity value is assumed to follow the relation

$$\rho = \rho_0 + \alpha T^2 + A \left(\frac{T}{\theta_R}\right)^5 \int_0^{\theta_R/T} \frac{x e^x}{(e^x - 1)^2} dx$$
(8)

up to 200 K. This assumption may result in a maximum probable error of only -1% or -0.03 x 10^{-8} Ω m at \sim 150 K.

At temperatures above 150 K, and up to the Curie temperature, there are a number of data sets that agree with each other to within ±2%: Moore et al. [139] (data set 15), Fulkerson et al. [136] (data set 16), Wallace et al. [143] (data set 21), Pallister [144] (data set 22), Jaeger et al. [145] (data set 24), Kohlhaas et al. [137] (data set 33), Kierspe et al. [78] (data set 39), Richter and Kohlhaas [134] (data set 43), Powell et al. [146] (data set 77), and Lauchbury and Saunders [147] (data set 217). Among these sources, Fulkerson et al. [136] (data set 16) reported also the resistivity at 4 K, and Moore

et al. [135] (data set 17) reported the residual resistivity ratio. Greater weight is given to the data of Moore et al. Most of these data sets appear to have resistivity values slightly higher than 9 x $10^{-8} \Omega m$ at 273 K, except for data sets 17 and 22. Judging from the ice point resistivity values and from the temperature variation of the solute resistivities of various elements in iron (see, for example, Schwerer and Cuddy [148]), it appears that the specimen of Moore et al. [135] (data set 17) is the purest among these groups, and its resistivity values at 90 K are within 2% of the recommended values based on the analysis of the available low temperature data described earlier. The recommended values within the range of ±100 K of the ice point are, therefore, based on data set 17, and in the higher temperature range up to 900 K they are based on the data sets mentioned above. Both graphical and numerical methods in curve fitting are employed. It is found that the electrical resistivity of iron can be represented by a cubic polynomial at temperatures from about 200 to 900 K.

For temperatures higher than 900 K and up to the Curie temperature, the electrical resistivity of iron increases more rapidly with temperature. Even though there are detailed accounts on the temperature derivative of the resistivity, the agreement between them is not good (see, for example, Lauchbury and Saunders [147] and Seehra et al. [149], the values of $d\rho/dT$ from these two accounts differ by $\sim40\%$ at 1030 K). The value of the Curie temperature has been reported to be 1040.3 ± 1 K (Seehra et al. [149]), 1038-1043 K (Fulkerson et al. [136]), 1051-1055 K (Morris [150]), 1044 ± 2 K (Arajs and Colvin [151]), 1037 K (Richter and Kohlhaas [134]), 1027 K (Kohlhaas and Richter [137]), 1042.7 K (Lauchbury and Saunders [147]), and 1036 K (Wallace et al. [143]). The last authors also reported a Curie temperature of 1042 K from their specific heat measurements. In view of the wide spread of the reported values, a Curie temperature of 1043 K is adopted from the AIP Handbook [152]. The recommended values below this temperature are based on the data of Lauchbury and Saunders [147] (data set 217), with slight adjustments so that they would merge smoothly with the recommended values at lower temperatures. The recommended value at the Curie temperature, 101.1 x $10^{-8} \Omega m$, is within 0.3% of the values given by Lauchbury and Saunders [147].

At temperatures above the Curie point, the differences between reported resistivity values from the above references become greater, even though they

are generally still within 2% of each other. The recommended values from the Curie temperature to the α - γ transition are based mainly on the results of Fulkerson et al. [136] (data set 16), Wallace et al. [143] (data set 21), and also of Powell et al. [146] (data sets 75-77). There are other detailed accounts on the resistivity at temperatures close to the α - γ transition: Kohlhaas and Richter [137] (data sets 37-38), Arajs and Colvin [151] (data sets 57-58), and Bullock [153] (data sets 98-99). However, there are wide discrepancies among these data sets. The data of Bullock and of Kohlhaas and Richter are too high and too low, respectively. The specimen of Arajs and Colvin showed some unexplained behavior, its residual resistivity ratio changed by +13% after the high temperature measurement, and the resistivity value at room temperature appeared to be too high for a zone-refined specimen. The onset of the $\alpha-\gamma$ transition, Ac, point, has been reported at 1188-1189 K (Moore et al. [139]), 1189 K (Kohlhaas and Richter [137]), 1189.7 K (Richter and Kohlhaas [134]), and has been inferred from graphical illustrations at about 1182 K (Powell et al. [146] data set 75), 1183 K (Arajs and Colvin [151] data set 57), 1187 K (Kohlhaas and Richter [137] data set 37), and 1186 K (Bullock [153] data set 98). Because of the lack of general agreement, the transition temperature is taken to be 1185 K, a value deduced from thermal expansion data [42].

As mentioned earlier, there are detailed reports on the behavior of the electrical resistivity at the α - γ transition. Not surprisingly, all these reports show that the transition occurs over a finite temperature range: ~4 K according to Powell et al. [146], Arajs and Colvin [151], and Bullock [153], and \sim 5 K according to Kohlhaas and Richter [137]. All reported a hysteresis effect: in the transition region, the resistivity values measured at decreasing temperatures were lower than those measured at increasing temperatures. The temperature for the onset of the $\gamma-\alpha$ transition upon cooling, the Ar₃ point, is also reported to be somewhat lower than the Ac₃ point. The latter three groups of authors also reported that the resistivity of α -iron at temperatures about one degree below the Ar₃ point after being cooled from the γ phase is higher than that of the α -iron after being heated from lower temperatures. In view of these and of the lack of such evidence from the data of Powell et al. [24] (data sets 75-77), this behavior is ignored at the present time. It is probable that such behavior is dependent upon specimen purity and its thermal history and mechanical history as well. Even though recommended values are

given at a single transition temperature (for both the α and the γ phases), the transition for a given specimen may be expected to occur over a small temperature range of approximately 1180-1190 K. Its resistivity below 1185 K may be somewhat ($\leq 0.5 \times 10^{-8} \Omega$ m) lower than the recommended value and vice versa above 1185 K.

There are relatively fewer data sets available for temperatures above the α - γ transition. The data sets which are considered reliable and from which the recommended values are derived are generally for temperatures less than \sim 1300 K. For higher temperatures, close to the γ - δ transition, the data of Cezairliyan and McClure [154] (data sets 62-63) appear to merge well with extrapolations of the data of Fulkerson et al. [136] (data set 16) and of Wallace et al. [143] (data set 21). The recommended values from the α - γ transition to the γ - δ transition are based on these data sets. At temperatures immediately above the α - γ transition, the data of Powell et al. [146] (data sets 75-76) are also taken into account.

There are only a few data sets for the electrical resistivity of δ -iron. The recommended values are based on the results of Cezairliyan and McClure [154] (data sets 62 and 64), Güntherodt et al. [92] (data set 206), and Powell [155] (data set 138). The slight upturn in the resistivity value at temperatures close to the melting point is based on the latter two data sets. This upturn seems to be substantiated by the data of Baum et al. [156] (data set 114) and of Kita et al. [93] (data sets 212-214). There exists only two reports on the change of resistivity value at the γ - δ transition, by Cezairliyan and McClure [154] (data sets 62-65), and by Kierspe et al. [78] (data set 41). Both indicate a slight increase in resistivity from the γ to the δ phase. No hysteresis has been reported.

There are in excess of 10 data sets available for the electrical resistivity of molten iron. Some of these: Güntherodt et al. [92] (data set 206), Kita et al. [93] (data sets 211-213), Baum et al. [156] (data set 114), Arsentiev et al. [157] (data sets 215-216), Ono and Yagi [89] (data set 115), and Eliutin et al. [88] (data set 92) cover the transition from the solid to the molten state. The last authors reported a decrease in resistivity upon melting for an impure specimen (~99.0% purity), in agreement with an earlier measurement on Armco iron by Mokrovskii and Regel [158], whose result has been widely quoted. However, the more recent measurements on purer specimens reported

in the references mentioned above all show an increase. The majority of the reported data show a linear dependence on temperature, and the data of Seydel and Fucke [87] (data set 205) which were obtained by a pulse-heated exploding wire technique show that the linear dependence is applicable up to 3000 K. The recommended values are based on the data of Güntherodt et al. [92] (data set 206) and Kita et al. [93] (data sets 212-214), both of which are obtained by steady state methods. Values above 1900 K are extrapolated according to a linear temperature dependence. The value at 3000 K is about 7% higher than that of Seydel and Fucke [87]. A few of the available data sets are obtained by the rotating field method: Ono and Yagi [89] (data set 115), Levin et al. [91] (data set 112), Baum et al. [156,159] (data sets 114,121), and Samarin [94] (data set 137). The reported data among this group show relatively large variations, but are still within 4% of the recommended values.

The recommended values both uncorrected and corrected for thermal expansion of the material are presented in table 7, while only the uncorrected values (except those for the liquid state) are shown in figures 5 and 6 along with the experimental data. These values at temperatures above 200 K are for iron of purity 99.99% or higher, while those below 200 K are applicable only to highly purified zone-refined iron having a residual resistivity of 0.0200 x $10^{-8} \Omega m$. The estimated uncertainty in the recommended values is ±5% below 100 K, ±3% from 100 to 200 K, and ±2% above 200 K up to the melting point. The uncertainty at temperatures immediately above the melting point is about ±5%, increasing to ±10% at the highest temperatures.

For slightly less pure iron having different residual resistivity, its electrical resistivity values can be calculated from the recommended values using the Matthiessen's rule, which will not introduce serious errors. For example, using Matthiessen's rule for the specimen of Moore et al. [135] (data set 17) gives discrepancies of $\pm 1.7\%$ (compared with the measured data) at 90 K, -2% at 260 K, and <0.1\% at 400 K. That for the specimen of White and Woods [21] (data set 86) gives discrepancies of -0.5% at 11 K, -1.3% at 22 K, $\pm 1.6\%$ at 98 K, -1.8% at 178 K, and -1.4% at 273 K. And that for the specimen of Fulkerson et al. [136] (data set 16) gives -1% at 77.5 K, $\pm 0.6\%$ at 194 K, and -1% at 273 K. Thus, it does appear that using the Matthiessen's rule and the recommended values will give resistivity values for a specimen with residual resistivity lower than $0.4 \times 10^{-8} \Omega$ m to within $\pm 2\%$, subject to the uncertainties

in the recommended values specified in the preceding paragraph. The applicability of Matthiessen's rule, to within the possible error of ± 23 , also seems to be confirmed for a more commonly available material, the electrolytic iron. For example, using the rule and comparing with the data of Hust and Giarratano [133] (data set 47) for SRM Iron-1265 gives discrepancies of -13 at 100 K, -0.93 at 200 K, and -1.53 at 280 K. Since deviations from the Matthiessen's rule for dilute iron alloys are positive (see, for example, Bass [160]), its application in calculating the electrical resistivity of an iron specimen lower in purity is likely to result in an underestimate, especially around room temperature where the deviation from Matthiessen's rule approaches a maximum. At high temperatures, the relative error introduced by the application of Matthiessen's rule should diminish with increasing temperature.

The recommended values uncorrected for thermal expansion given in table 7 can be represented approximately by the following expressions to within $\pm 0.1\%$. 1-200 K:

$$\rho = 0.02 + 58.1 \left(\frac{T}{467}\right)^5 \int_0^{467/T} \frac{e^x x^5}{(e^x - 1)^5} dx + 1.3 \times 10^{-5} T^2$$
(26)

200-900 K:

$$\rho = -1.120747752 + 2.261529506 \times 10^{-2}T + 3.913892564 \times 10^{-5}T^{2} + 2.952608182 \times 10^{-8}T^{3}$$
(27)

900-1020 K:

$$\rho = -513.9789758 + 1.70577020 \text{ T} - 1.804410343 \times 10^{-3} \text{T}^2 + 7.034546961 \times 10^{-7} \text{T}^3$$
(28)

1020-1143 K in the vicinity of the Curie temperature, T_c :

$$\rho = 101.13 - 2.984305206 \times 10^{-1} (T_C - T) + 1.905714112 \times 10^{-3} (T_C - T)^2 - 1.3355493086 \times 10^{-5} (T_C - T)^3$$
(29)

1043-1070 K:

$$\rho = 101.13 + 2.020277018 \times 10^{-1} (T-T_C) - 5.420505212 \times 10^{-3} (T-T_C)^2 + 1.294364953 \times 10^{-4} (T-T_C)^3 - 1.243596538 \times 10^{-6} (T-T_C)^4$$
(30)

1070-1185 K:

$$\rho = -1309.064808 + 3.419572717 T - 2.773870769 \times 10^{-3}T^{2} + 7.595259559 \times 10^{-7}T^{3}$$
(31)

1185-1667 K:

$$\rho = 55.0861977 + 5.289665269 \times 10^{-2}T + 9.77621850 \times 10^{-12}T^2 - 4.0798019 \times 10^{-9}T^3$$
(32)

1667-1811 K:

$$\rho = -11976.94918 + 21.0981583 \text{ T} - 1.226701138 \times 10^{-2} \text{T}^2 + 2.378811917 \times 10^{-6} \text{T}^3$$
(33)

1811-3000 K:

$$\rho = 135.2 + (T - 1811) \times 1.545 \times 10^{-2}$$
(34)

It should be emphasized that these expressions do not necessarily suggest any theoretical justification, and should be treated, most appropriately, as numerical aids only. It should also be understood that giving these expressions does not imply a recommendation for the temperature derivative of the electrical resistivity.

T	()	T		p
	uncorrected	corrected		uncorrected	corrected
1	0.0200	0.0200	800	57.14	57.56
4	0.0202	0.0202	900	72.46	73.11
7	0.0206	0.0206	1000	90.80	91.76
10	0.0213	0.0212	1043	101.1 ^b	102.2 ^b
15	0.0232	0.0231	1100	107.0	108.3
20	0.0262	0.0261	1150	110.1	111.5
25	0.0313	0.0312	1185	<u>111.9(a)</u>	<u>113.4(α)</u>
30	0.0396	0.0395	1185	111.0(Y)	<u>112.1(y)</u>
40	0.0733	0.732	1200	111.5	112.6
50	0.145	0.145	1300	114.9	116.4
60	0.268	0.267	1400	117.9	119.7
70	0.449	0.448	1500	120.7	122.8
80	0.690	0.689	1600	123.0	125.4
90	0.964	0.962	1667	$124.4(\gamma)$	127.0(γ)
100	1.28	1.28	1667	124.6(ð)	
150	3.16	3.16	1700	125.4	
200	5.20	5.19	1800	127.9	
250	7.44	7.44	1811	128.6(δ)	
273	8.57	8.57	1811		135.2 ^c (l)
293	9.61	9.61	1900		136.6 ^c
300	9.98	9.98	2000		138.2 ^c
400	16.08	16.10	3000		153.6
500	23.66	23.72			
600	32.92	33.06			
700	44.02	44.27			

TABLE 7. RECOMMENDED VALUES FOR THE ELECTRICAL RESISTIVITY OF IRON^a

[Temperature, T, K; Electrical Resistivity, ρ , $10^{-8} \Omega m$]

а The values are for iron of purity 99.99% or higher, but those below 200 K are applicable only to iron having a residual resistivity of 0.0200 x 10^{-8} Ω m. Columns headed uncorrected and corrected refer to values uncorrected and corrected for thermal expansion, respectively. Dotted lines separating tabular values indicate solid phase transitions and solid line indicates solid to liquid state transformation.

b α : bcc; γ : fcc; δ :bcc. b Value at the Curie temperature. c Provisional value.

2

3

56

2 3 FIGURE 5

4 5 6 8 103

205

82

4 5 6

CINDAS

8 1

2 3 4 5 6

8 10

2

3 4

TEMPERATURE , K

927 21-273 Iron 1 T 959 A 4.2-293 c
227 21-273 Iron 1 559 A 4.2-293 667 A 323-523 Pure iron

* Not shown in figure.

TABLE 8. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF IRON Fe (continued)

.

E S E	žż	Author (s)	Year	Method Used	Temp. Range,K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
61	165	Powell, R.V. and Tye, R.P.	1967	<	323-1073	Pure iron Sample No. 2	0.0055 Ni, 0.0053 Si, 0.0038 Ai, 0.0035 S, 0.002 Co, 0.0017 P, 0.0014 C, 0.001 Cr, °0.001 Mn, 0.0008 0, 0.0007 N, and 0.000016 H; short rod 1.27 cm diam prepared by Metallurgy Division of National Physical Lab.; machined from a disk.
• • • •	165	Powell, R.V. and Tye, B.F.	1967	۲	323-523	Purefree iron Sample No. 6	0.08 Si, 0.03 C, 0.015 P, 0.01 Mn, and 0.01 S; 2.54 cm in diam and 20 cm long; supplied by Low Moor Best Yorkshire Iron Ltd.; 1) the above specimen measured at increasing temperatures; 2) the above specimen measured at decreasing temperatures.
51	139	Moore, J.P., Fulkerson, N., and McElroy, D.L.	1964	~	73-1273	High purity iron	0.001-0.01 Ni, 0.001-0.01 Si, 0.003 S, 0.003 C, 0.0025 O, 0.0011 P, 0.0001-0.001 Ai, 0.0001-0.001 Ca, 0.0001-0.001 Cu, 0.0005 N, and 0.0001 H; atomic percent, data here rounded off; prepared by arc melting Armco iron stock in pure inert atm to produce pancake shaped billets, rolled into sheets and cut to make feed stock for electron beam melting, then cast into 10.16 cm (4 in.) in diam and 15.24 cm (6 in.) in diam and 7.62 cm (3 in_1) long, cut from center portion of billet; measured in vacuum at 10^{-5} to 10^{-7} Torr; data corrected for thermal expansion except points at 7.3, 189, and 273 K.
16	136	Fulkerson, W., Moore, J.P., and McElroy, D.L.	1966	۲.	4.0-1273	High purity iron	99.95 Fe, 0.002-0.02 S1, 0.014 C, 0.00095-0.0095 N1, 0.0088 0, <0.0056 H, 0.0022 S, 0.0021-0.0021 A1, 0.002 P, 0.002 N, 0.00014- 0.0014 Ca, and 0.00009-0.0009 Cu, in atomic percent; obtained by electron beam melting of Armco iron; homogeneous to 10.19; rod specimen 38:10 cm (0.15 in.) in diam and 7.62 cm (3 in.) long; free of voids; immersion density 7.881 g cm 3 ; smoothed data extracted from table; data corrected for thermal linear expansion; resistivity measured with current densities of 6.8, 11 and 11 A cm ⁻² at 4, 77.5 and 194.1 K respectively.
11	135	Moore, J.P., McElroy, D.L., and Barisoni, M.	1966	X	90-40	Grade 1	Cylindrical specimen machined from electron beam zone-refined iron (3-page); produced by Materials Research Corp.; density 7.824 g cm ⁻¹ ; electrical resistivity ratio $\rho(273 \mathrm{K})/\rho(4.2 \mathrm{K}) = 201$; smoothed data from table.
18	166	McDonald, W.J., Jr.	1962	<	1.63-80.7		Cut from a zone-refined ingot; prepared at BMI; machined into a rec- taugular parallel piped 0.157 x 0.157 x 0.381 cm (0.062 x 0.062 x 1.5 in.).
19	167	Bungardt, K. and Spyra, W.	1965		293-1373		0.03 Ni, 0.015 C, 0.007 S, and traces Al, Mo, P, and Si; cylindrical specimen.
8	168	Bohm, R. and Machtel, E.	1969		196-406		0.005 N, 0.004 C, and 0.003 0; cylindrical specimen 10 mm in diam.

* Not shown in figure.

85

Fe (continued) MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF IRON TABLE 8.

R Set R	Ref.	Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
21	143	Wallace, D.G., Sidles, P.H., and Danielson, G.C.	1959	£	298-1323	High purity iron	0.03 C, 0.01 N and O each, <0.0005 Ni, 0.0001 Cu, <0.0001 each of Mg. Si, Ag, and Na; wire specimen 0.0254 to 0.0346 cm in diam and 4 to 7 cm long; from Johnson and Matthey Co.; drawn and annealed at 1273 K for 1 h, cooled at a rate of 40 kh ⁻¹ while measurement was made; with some specimens, measurements here made upon reheating, and data "accurately reproduced"; smoothed values from table, representing data for two specimens; uncorrected for thermal expansion; values do not reflect a discontinuity of 0.6% upon cooling at 1173 K.
22	144	Pallister, P.R.	1949	V	273-1548		99.99 ^{\pm} Fe; 1 cm in diam and 30 cm long; density 7.87 \pm 0.005 g cm ⁻³ ; uncorrected for thermal expansion; data extracted from table.
23*	169	Bäcklund, N.G.	1961	<	90290	Pure iron Data Set 1	Three types of specimens: 1) "very pure iron" wire; 2.5 mm in diam; from Phillips Research Lab., 2) spectroscopically standardized pure iron wire; 5 mm in diam; from Johnson and Matthey Co., 3) pure iron wires; 1.0 and 2.0 mm in diam; from Heraeus Inc.; all specimens an- nealed at 773.2 K for 10 h; data reported as average of all three types.
24	145	Jaeger, F.M., Rosenboha, E., and Zuithoff, A.J.	1938		293-1243	Pure iron	Pure; 0.25 mm in diam and 925 mm long; data corrected for thermal expansion.
25*	170	Cleaves, H.E. and Hiegel, J.M.	1942		293	Ingot #2	0.002 S, <0.002 Cu, 0.001 C and Si each, <0.001 Be, and <0.0005 P; 2 mm in diam and about 1 meter long; ingots produced by recrystalli- zation of ferric nitrate, conversion to ferric oxide, reduction to sponge fron, and meiting under hydrogen and in a vacuum, forged, cold- rolled, swaged, and drawn; annealed in vacuum for 15 min at 1123 K.
26*	170	Cleaves, H.E. and Biegel, J.M.	1942		293	Ingot #7	0.002 O and S each, <0.002 Cu, 0.001 Si, and <0.001 C; dimensions, fabrication method, and heat treatment same as the above specimen.
27#	170	Cleaves, H.E. and Hiegel, J.M.	1942		293	Ingot #14	0.002 O and S1 each, 0.002 Cu, 0.001 C and S each; dimensions, fabri- cation method, and heat treatment same as the above specimen.
28*	170	Cleaves, H.E. and Hiegel, J.M.	1942		293	Ingot #11	0.004 0, <0.002 Cu, and 0.001 S; dimensions, fabrication method, and heat treatment same as the above specimen.
29#	170	Cleaves, H.E. and Hiegel, J.M.	1942		293	Ingot #19	0.004 0, 0.002 S, <0.002 Cu, and <0.001 C; dimensions, fabrication method, and heat treatment same as the above specimen.
304	170	Cleaves, H.E. and Hiegel, J.M.	1942		293	Ingot #6	0.004 0, <0.002 Cu, 0.001 S and Si each, and <0.001 Be and C each; dimensions, fabrication method, and heat treatment same as the above specimen.
11	130	Kemp, W.R.G., Klemens, P.G., and White, G.K.	1956	<	4.2-293	JM 5092	99.99 Fe, 0.005 Ni, 0.0002 Cu, 0.0001 Ag, and traces Mg and Mn; 2 mm in diam rod; supplied by Johnson and Matthey Co.; annealed at 1023 K (750 C) for 4 h in vacuum; resistivity values calculated from reported ideal electrical resistivity and $\rho_0 = 0.248 10^{-8} \mathrm{Gm}$.
* Not	shown	in figure.			1		

1

Deta				Mathod	Tomn	Name and	计中心计计学 的复数计划计划 医外周周的 化合物 化合物化合物 化合物化合物 化合物化合物 化合物化合物化合物 化二甲基酸盐 化合体试验 医尿道试验检尿道 化化合物化合物 计可以分析
k set	2	Author (s)	Year	Used	Range, K	Specimen Designation	Composition (weight percent), Specifications and Remarks
32	171	Yoshida, I.	1965		0.5-1.1		No details given.
8	137	Kohlhaas, R. and Richter, F.	1962	£	293-1523	FeL	0.064 0, 0.0027 C, 0.002 S, 0.001 Mn, N, and Si each; 0.5 cm in diam and 25 to 30 cm long; turned from square bar, transition temperatures: $Ac_2 = 1027 K (754 C)$, $Ac_3 = 1189 K (916 C)$ and $Ar_3 = 1175 K (902 C)$; smoothed data from table.
34	137	Kohlhaas, R. and Richter, F.	1962	а,	90-291	Feµ	The above specimen.
35*	137	Kohlhaas, R. and Richter, F.	1962	£	969-1080	Feµ	The above specimen at temperatures about the Curie point; measured while heating.
36*	137	Kohlhaas, R. and Richter, F.	1962	£	972-1079	Fe	The above specimen at temperatures about the Curie point; measured while cooling.
37*	137	Kohlhaas, R. and Richter, F.	1962	£	1176-1198	Feu	The above specimen at temperatures about the $\alpha\text{-}\gamma$ transition; measured while heating.
38*	137	Kohlhaas, R. and Richter, F.	1962	£	1164-1195	Feµ	The above specimen at temperatures about the $\alpha\text{-}\gamma$ transition; measured while cooling.
39	78	^v ierspe, W., Kohlhaas, R., and Gonska, H.	1967	8	73-1715		0.0060 S, 0.0050 C, 0, and S1 each, 0.0016 M, 0.0010 N, and P each; wire specimen from Prof. W.A. Fischer, Max-Planck-Institute for Iron Research; smoothed values from figure.
40	78	Kierspe, W., et al.	1967	80	1103-1283		The above specimen at temperatures about the $lpha-\gamma$ transition.
41	78	Kierspe, W., et al.	1967	g	1553-1713		The above specimen at temperatures about the $\gamma-\delta$ transition.
42*	208	Kohlhaas, R. and Kierspe, W.	1965		83-353		0.0027 C, 0.002 S, 0.001 Mn, N, and Si each, and trace of Cr.
43	134	Richter, F. and Kohlhaas, R.	1964		93-1273		0.012 0, 0.008 P, 0.007 C, and Al each, 0.004 S, and 0.002 N; disk specimen 63 mm outer diam; annealed for several hours at 1193 K (900 C); Curie point 1037 K (764 C); α - γ transition: Ac ₃ = 1189.7 K (916.7 C), Ar ₃ = 1186.3 K (913.3 C).
***	172	Jaeger, W. and Diesselhorst, N.	1900		291-373	Eisen I	0.1 C, metallic impurities not determined; 1.3007 cm in diam and 27.0 cm leng; density 7.84 g cm ^{-3} .
454	173	Lorenz, L.	1881		273-373		No details reported.
464	174	Brown, H.M.	1928	¥	312		0.0794 cm ² x 10 cm.
* Not	shown	in figure.					

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

e

TABLE 8. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF IRON Fe (continued)

The second s

3 -	j	Author (s)	Year	Method	Temp.	Name and Spectmen	(nannafring (usish pernant) Cnanffingting and Basaka
	ż			Used	Range, K	Designation	COMPOSITION (NEIBHT PERCENT), SPECIALCELIONS AND NEMATING
	133	Hust, J.G. and Giarratano, P.J.	1975		4-280	uBS electrolytic iron	99.9 ⁺ Fe. 0.041 Ni, 0.0080 Si, 0.0072 Cr, 0.007 Co, 0.0067 C, 0.0059 S, 0.0058 Cu, 0.0057 Mh, 0.0005 No, 0.0023 P, 0.0007 Al, 0.0006 Ti and V each, 0.0002 As, 0.00013 B, 0.00002 Pb; chemical composition certified by NBS, SRM 1265; grain size 0.05 am for annealed condition; rod spectimen 3. 6 mm in diam and 23 cm long, apparently annealed; density 7.867 \pm 0.0003 cm ⁻³ , for annealed condition; Rockwell hardness B24, for annealed condition; mockwell resistivity Tatio p(273 K/p(4 K)) is 23; residual resistivity 0.385 x 10 ⁻⁶ Am, average p1(273 K/p(4 K)) is 23; residual resistivity 0.385 x 10 ⁻⁶ Am, average p1(273 K/p(4 K)) is 23; residual resistivity 0.385 x 10 ⁻⁶ Am, average p1(273 K/p(4 K)) is 23; residual resistivity 0.385 x 10 ⁻⁶ Am, average p1(273 K/p(4 K)) is 23; residual resistivity 0.385 x 10 ⁻⁶ Am, average p1(273 K/p(4 K)) is 23; residual resistivity 0.385 x 10 ⁻⁶ Am, average p1(273 K/p(4 K)) is 23; residual resistivity 0.385 x 10 ⁻⁶ Am, average p1(273 K/p(4 K)) is 23; residual resistivity 0.385 x 10 ⁻⁶ Am, average p1(273 K/p(4 K)) is 23; residual resistivity 0.385 x 10 ⁻⁶ Am, average p1(273 K/p(4 K)) is 23; residual resistivity resistive of the subord of the subord point and bi. = -1.52095464 x 10 ⁻⁶ bis = -2.5955461 x 10 ⁻⁶ bis = -2.595519976 x 10 ⁻⁷ bis = -2.595519976 x 10 ⁻⁷ bis = -2.5095564 x 10 ⁻⁶ bis = -2.595519976 x 10 ⁻⁷ bis = -2.595519976 x 10 ⁻⁷ bis = -2.595519976 x 10 ⁻⁷ bis = -2.59551976 x 10 ⁻⁷ bis = -2.59551976 x 1
•	138	Dewar, J. and Fleming, J.A.	1893	P 2	76-471	Iron A	0.25 Mn, 0.01 S, very free from C, S1, and P; wire specimen 0.02657 cm mean diam and 100 cm long; from Armstrong's works, sent by Colonel Dyer of Elswick Ordnance Works; resistance 0.4223, 1.1909, 1.5086, 1.9104, 2.0737, 2.4167, 2.8368, 3.4091, and 4.1935 ft at 76.1, 191.3, 229.3, 274.55, 291.65, 325.25, 363.7, 412.0, and 470.5 K, respectively; temperature below 273 K (0 C) measured by platinum resistance ther- mometer; data uncorrected for thermal expansion, length and mean diameter measured at 288 K; data extracted from table.
	138	Devar, J. and Fleming, J.A.	1893	R.	54,76	Iron A	Longer specimen cut from the same piece as Data Set 48; resistance 2.983 and 3.834 Ω at 53.8 and 76.1 K, respectively; data uncorrected for thermal expansion, length measured at 288 K; data extracted from text; temperatures measured by platinum resistance thermometer.
	136	Dewar, J. and Fleming, J.A.	1893	<u>م</u>	76-469	Iron H.W.	High degree of purity; wire specimen 0.023078 cm mean diam and 100 cm long; from Messrs. Hopkins and Williams; very soft and veil annealed, cold worked under the hammer and drawn without heating, into a very uniform wire; resistance 0.2918, 1.2713, 1.7137, 2.1791, 2.3940, 2.9546, 3.4976, 4.2536, and 5.1395 R at 76.1, 191.3, 234.0, 273.85, 291.40, 333.40, 371.25, 418.6 and 469.3 K, respectively: mean temper- ature coefficient between 273 and 373 K, 0.00625; data uncorrected for thermal expansion. length and mean diameter measured at 288 K; data extracted from table; temperature below 273 K (0 C) measured by platinum resistance thermometer.

* Not shown in figure.

ţ

Re t B		Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
51*	138	Dewar, J. and Fleming, J.A.	1893	2	51-76	lron H.W. Coil (a)	Longer coil cut from the same wire as the above specimen, 2600 cm long; resistance 3.839, 4.154, and 7.091 Ω at 51.0, 54.0 and 76.1K, respec- tively; data uncorrected for thermal expansion, length measured at 288 K; data extracted from table; temperature measured by platinum resistance thermometer.
52*	138	Dewar, J. and Fleaing, J.A.	1893	2	51-76	Iron H.W. Coll (b)	Still longer coil cut from the same wire as the above specimen; wire specimen 3700 cm long; resistance 5.222, 5.257, and 9.875 ß at 50.5, 50.8, and 76.1 K, respectively; data uncorrected for thermal expansion. length measured at 288 K; date extracted from table; temperature measured by platinum resistance thermometer.
33	130	Devar, J. and Fleming, J.A.	1892	2	76-370		Pure soft iron; wire specimen had probable dimensions of 0.0076 (0.003 in) in diam and 50 or 100 cm long; from Messrs. Griffin and Co.; annealed; mean diameter of wire measured to nearest 0.000254 cm (0.0001 in); measurement of resistance repeated several times; mean observed specific resistance reported; data uncorrected for thermal expansion; data extracted from table.
3	175	Honde, K. and Simidu, T.	1917	4	302- 1174	Swedish iron	Cylindrical specimen, 0.5 cm in diam and 20 cm long.
55*	151	Arajs, S. and Colvin, R.V.	1964	~	300-1291		0.00300 0, 0.0015 Ni, 0.0012 Co, 0.0005 C and Ge each, 0.0004 Cr, 0.0003 N, 0.00015 Cu, 0.00008 Zn, 0.00004 Ga, 0.00003 Nb, 0.000025 Ti 0.00002 V, 0.000009 As, <0.000004 Mn, and <0.000007 Others; zone re- fined; 0.1 x 0.3 x 2.0 cm; $p(4,2 K)/p(298 K) = 3.76 x 10^{-3}$ before high temperature test and 4.30 x 10^{-3} after test; Curie temperature 1044 \pm 2 K; measured with a current density of v12.9 x 10^8 Am ² ; corrected for thermal expansion; data extracted from figure.
56#	151	Arajs, S. and Colvin, R.V.	1964	V	1018-1068		The above specimen in the neighborhood of Curie temperature; corrected for thermal expansion; data from figure.
57*	151	Arajs, S. and Colvin, R.V.	1964	۲.	1151-1197		The above specimen measured through $\alpha-\gamma$ transition; temperature in- creasing; uncorrected for thermal expansion; data from figure.
1 2	151	Arajs, S. and Colvin, R.V.	1964	*	1150-1186		The above specimen measured while cooling through 0-Y transition; tem- perature decreasing; uncorrected for thermal expansion; data from figure.
594	176	Kondorskii, E.I. and Sedov, V.L.	1960	×	4.2		Technically pure; 0.59 cm in diama and 11.2 cm long; vacuum annealed at 1273 K for 8 h; oven cooled; measured under saturation magnetiza- tion 1751 g.
3	177	Ibragimov, Sh.Sh.	1962	۷	293-1698	Iron	0.06 Si, 0.04 C, 0.02 Mn and Cr each; annealed at 1033 K.
e 19	178	Butler, E.H., Jr. and Pugh, E.M.	1940		313-343		Electrolytical iron; annealed in hydrogen.
Kot	shown	on either figure.					

R Se ta	Ref.	Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
62	151	Cesairliyan, A. and McClure, J.L.	1973		1500-1660	Y iron l	Tubular specimen $6.3 \text{ mm} 0.0$., 0.5 mm thick and 102 mm long; fabricated from rods by electro-erosion technique; $\gamma-6$ transition reported at 1682 K; melting point 1808 K; specimen heated to measuring temperature in one second by passing current through; uncorrected for thermal expansion; smoothed data from table.
63	154	Cezairliyan, A. and McClure, J.L.	1973		1500-1660	Y iron 2	Similar to the above specimen (one of this or the above specimen has an electrical resistivity value of 10.2 x 10^{-6} M m at 273 K).
3	154	Cezairliyan, A. and McClure, J.L.	1973		1700-1800	ő iron l	The same specimen as for Data Set 62.
65	151	Cesairliyan, A. and McClure, J.L.	1973		1700-1800	ô iron 2	The same specimen as for Data Set 63.
99	179	Miccolai, G.	1908	£	84-673		0.5 mus in diam and 5 mms long; from Firma C.A.F. Kahlbaum.
674	180	Wruck, D. and Wert, C.	1955	Λ	293		99.95 pure; 0.04 0, little metallic impurity.
48 9	180	Wruck, D. and Wert, C.	1955	>	93		Same as above; foil polycrystal, 0.008 cm x 0.2 cm x 4 cm; Run II.
# 69	180	Wruck, D. and Wert, C.	1955	Α	93		Same as above; Run II.
10*	180	Mruck, D. and Mert, C.	1955	Δ	93		Same as above; Run IV.
71*	180	Wruck, D. and Wert, C.	1955	>	Ľ		Same as above except wire specimen; 0.0762 cm in diam and 15 cm long; grain size ~0.6 cm; decarbonized.
72*	180	Wruck, D. and Wert, C.	1955	>	11		Same as above.
73*	180	Mruck, D. and Wert, C.	1955	Λ	μ		Same as above.
74*	181	Rosenberg, H.M.	1955	~	1.8-77	JM 4975 (Run 2)	99.99 pure (excluding gases); from Johnson and Matthey Co.; polycrys- talline; 0.202 cm in diam and 2.89 cm long; annealed in vacuum for several houra.
75	146	Powell, R.W., Tye, R.P., and Woodman, M.J.	1961	~	1088-1196	18 AF 3	0.007 Cu and Ni each, 0.0058 C, 0.004 Mn and Si each, 0.003 S, 0.0023 N, 0.002 Cr, <0.001 Al, <0.001 P, 0.0008 O, and <0.000005 H; measured during heating of the sample at a rate of 0.25 K min ⁻¹ , data uncorrected for thermal expansion.
764	146	Powell, R.W., et al.	1961	×	1160-1191	18 AF 3	The above specimen measured during cooling.
"	146	Powell, R.W., et al.	1961	~	4-1073	18 AF 3	The above specimen measured at lower temperatures; smoothed values from table.
Mot	ahow	on either figure.					

				IN THE NEW YORK		AN INE PLANTAN	Presiditition the (continued)
k sta		Author (s)	Year	Me thod Used	T em p. Range , K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
184	123	Taylor, G.R., Isin, A., and Coleman, R.V.	1963	¥	191-191	Specimen #25	One of iron whisker specimens 100-300 µ in diam and about 2 cm long.
#6L	123	Taylor, G.R., et al.	1963		77-300		Same as the above; resistivity values calculated from reported resistance ratios $R(T)/R(77 K)$ and $p(77 K)$ given in the above data set; average of seven specimens.
8	182	Soffer, S., Diessen, J.A., and Pugh, E.M.	1965	4	76-300		<0.0185 metallic impurities; zone-refined; 0.1 cm x 1 cm x 10 cm.
81*	183	Yoshikawa, A. and Okamoto, M.	1967	۲	77,273		Zone refined iron (total impurity less than 0.001X); grain <70 μ in diam; decarburized at 973 K for 7 days in wet hydrogen stream; ultrasonically cleaned; chemically polished with HF + H50; heat treated at 773 K for 14 days in hydrogen purified by zirconium hydride; annealed at 773 K for 30 min; then cooled at 15 K hr ⁻¹ ; room temperature value calculated from reported resistance ratio (p_{223} K/ p_{77} K).
82*	184	Takamura, S., Maeta, H., and Okuta, S.	1968	4	4.2,293		99.996 pure, 0.0008 C, 0.007 N and O each, from Materials Research Corp.; wire specimen 0.12 mm in diam; as received condition: value at room temperature calculated from reported resistivity ratio and re- sidual resistivity.
8 3#	184	Takamura, S., et al.	1968	×	4.2,293		Same as the above specimen except annealed at 773 K for 1 h in vacuum and then at 973 K for 1 h.
5	184	Takamura, S., et al.	1968	۲	4.2,293		Similar to the above.
85#	184	Takamura, S., et al.	1968	¢,	4.2,293		Similar to the above.
8	31	White, G.K. and Woods, S.B.	1959	۲	4.2-295	Fe 2	99.97 pure, ~0.004 S1, <0.004 Co, Cu, and Ni each, ~0.003 Mo and Mn each, <0.00015 N, and traces Pb and Zr; 0.05 mm x 1 mm x 6-8 cm; from Vacuum Metals Co.; zone-melted in wet hydrogen to obtain large crystals; electrically annealed at 873 K to remove hydrogen; resignivity calculated from reported $\rho_1(T)$, $\rho(4.2K)/\rho(295K) = 9.61 \times 10^{-3}$, and $\rho_1(295K) = 9.62 \times 10^{-6}$ Cm.
874	165	Smith, A.W., Gregory, J.H., and Lynn, J.T.	1946	6	293		"Chemically pure"; wire specimen 0.1019 cm in diam and 15.2 cm long.
1	165	Smith, A.W., et al.	1946	Ξů	293		"Chemically pure"; wire specimen 0.0823 cm in diam and 15.5 cm long.
ŝ	185	Smith, A.W., et al.	1946	£	293		"Chemically pure"; wire specimen 0.0406 cm in diam and 5.0 cm long.
2	165	Seith, A.V., et al.	1946	œ	293		"Chemically pure"; wire specimen 0.0201 cm in diam and 3.4 cm long.
let l	For	on either figure.		ļ			

 Manden, F.M., 191) A. 28-1167 CO. Standard Lice and L	1220	18	anther(s)	Ĭ		įį	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
0 Interts, V.V., INJ 1441-204 Inter-School (1994) 1441-204 Inter-School (1994)		1		(141	~	288-1167		0.03 impurities; well annealed iron supplied by Johnson and Matthey Co.; average grain size 2 um; measured in vacuum (~10 ⁻⁵ mmHg) under quasistatic condition with heating rate not more than 1 K/min.
1 10 C 100 C 000 S 000	2	8		1963	-	1448-2094		99.0 pure; by carbonyl method or electrolytically; liquid state ob- tained by meiting in graphite crucible either in a helium atm or in vacuum.
mediate 1.1. 191 M-H-1013 99.9 ⁺ press frame Goodfallow Metala Left. Equal 11.0 cm x 2.0 cm x 1.0 cm x 1.0 cm x 2.0 cm x 1.0 cm x 1.0 cm x 2.0 cm x 1.0 cm x 1.0 cm x 2.0 cm x 1.0 cm x	8	Â	Anthread, 1.1. and	6791	υ	1808		99.998 pure, frow Johnson and Matthey Co., in liquid state; tempera- ture = 1808 K assumed.
9.131hulkeek, G.1954V328-11300.027 Nu, 0.027 Nu, 0.027 Nu, 0.007 St, 0.007 S	1	Ĩ		1974	۲	344-1015		99,99 ⁺ pure; from Goodfellow Metals Ltd., England; 1.0 cm x 2.0 cm x 4.0 cm; annealed at 1473 K for 24 h under vacuum.
We 13 Malleel, G. 1936 V 1004-121 The above speciaen while feating. 91 133 bulleel, G. 1936 V 1003-1230 The above speciaen while feating. 91 133 bulleel, G. 1936 V 1003-1230 The above speciaen while feating. 91 133 bulleel, G. 1936 V 1163-1186 The above speciaen backing at a rate of 0.23 K ath ⁻¹ . 91 133 bulleel, G. 1936 V 1163-1186 The above speciaen backing at a rate of 0.23 K ath ⁻¹ . 91 bulleel, G. 1935 V 1163-1186 The above speciaen backing at a rate of 0.23 K ath ⁻¹ . 91 bulleel, G. 1935 Y 1163-1186 The above speciaen for functing have volt 1961; 1960; 1961; 196	8	5	hai bach, c.	10% 1	>	92 8- 1150		0.027 Mm, 0.02 C, 0.018 P, 0.017 S, 0.007 S1, 0.005 N and traces Ni; Armeco from manufactured by the basic 0.H. technique; inclusions not detectable by microscope; 1.3 cm in diam and about 15 cm long; measured with a current of 20-30 A, and in vacuo; this curve represents coinci- dent values during both heating and cooling (rate 1-1.5 K/min).
 13 malack, G. 1956 V 1003-1220 The above speciaen while heating. 13 malack, G. 1956 V 1174-1136 The above speciaen bating at a rate of 0.25 K min⁻¹. 199 13 malack, G. 1956 V 1163-1136 The above speciaen cooling at a rate of 0.25 K min⁻¹. 100 130 malack, G. 1956 V 1163-1136 The above speciaen cooling at a rate of 0.25 K min⁻¹. 101 130 Landmarry, E.V., and Barvey, J.S., Popeciaen ane as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen ane as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Popeciaen asse as used in Kaufmann, L., Løyenaar, A., and Barvey, J.S., Sani, Popeciaen assertional area to 100207 (J-0.00207); values from tron from Actin, Poh. 2007 (J-0.0029); values apeciaen assertion, P.N., P.N.	ž	153	Buildech, G.	1956	*	1004-1221		The above specimen while cooling.
 13 Malaet, G. 1936 V 1174-1196 The above specimen heating at a rate of 0.25 K min⁻¹. 14 Malaet, G. 1956 V 1163-1136 The above specimen could at rate of 0.25 K min⁻¹. 16 Malaet, J. 1956 V 1163-1136 The above specimen could at rate of 0.25 K min⁻¹. 16 Martie, L., 1956 V 1163-1136 The above specimen could at rate of 0.25 K min⁻¹. 16 Martie, L., 1951 32-1425 Specimen asse a used in Kaufmann, L., Løyenar, A., and Marvey, J.5., progress in Very High Pressure Kasserch, p. 89, Miley, New York, 1961; assetting the search of 0.25 K min⁻¹. 16 Martie, D.M. 1897 3 273-1036 Specimen asse a used in Kaufmann, L., Løyenar, A., and Marvey J.5., progress in Very High Pressure Kasserch, p. 89, Wiley, New York, 1961; assetting the search of 0.25 K min⁻¹. 10 Mortis, D.M. 1897 3 273-1036 Specimen Asset assetting to 113 K; realizated fram frames reporting attent progress actional area 0.131 K⁻¹ and mean ring diameter 2.135 cm⁻¹ assetting to 1.11 m⁻¹ and mean ring diameter 2.135 cm⁻¹ assetting to 1.11 m⁻¹ and the mating the rate of 0.123 K; relating the rate of 0.131 K⁻¹ and the search of 0.132 K; relating the rate of 0.132 K; relating to 1.11 m⁻¹ and the rating diameter 2.135 cm⁻¹ and the rate of 0.133 K; relating to 1.11 m⁻¹ and the rate of 0.133 K; relating to 1.113 K⁻¹ and the rate of 0.133 K; relating to 1.113 K⁺¹ and trace of 0.133 K; relating to 1.113 K⁺¹ and trace of 0.133 K; relating to 1.113 K⁺¹ and trace of 0.133 K; relating the rate of 0.133 K; relating to 1.113 K⁺¹ and trace of 0.133 K; relating to 1.113 K⁺¹ and trace of 0.133 K; relating the rate of 0.133 K; relating to 1.113 K⁺¹ and trace of 0.133 K; relating the rate of 0.133 K; relating to 1.113 K⁺¹ and trace of 0.133 K; relating the rate of 0.133 K; relating to 1.113 K⁺¹ and trace of 0.133 K; relating the rate o		661	muldet. G.	1956	>	1003-1220		The above specimen while heating.
 Mallack, G. 1956 V 1163-1166 The above specimen cooling at a rate of 0.25 K afn⁻¹. Referent, L., Leyenar, A., and Marvey, J.S., Specimen and an automative section. P. 89 villey, Ward Vork, 1961; Progress in Very High Prenuce Research, p. 89 villey, Ward Vork, 1961; Progress in Very High Prenuce Research, p. 89 villey, Ward Vork, 1961; Progress in Very High Prenuce Research, p. 89 villey, Ward Vork, 1961; Progress in Very High Prenuce Research, p. 89 villey, Ward Vork, 1961; Progress in Very High Prenuce Research, p. 89 villey, Values from reported under the statistic villed from reported magnetic restatistic on 1133 K; restatistic villed from reported magnetic restatistic on 1133 K; restatistic villed from reported magnetic restatistic on 1133 K; restatistic on 1029 (1-0,027); values from table. Norris, D.M. 1897 B 273-1036 Specimen A Charcoal Iron; from Meser, Jos. Sanky and Sons; ridg shape specimen of corns section. Besource during cooling after heated to 133 K; density 7,775 g cm²; secured during cooling after heated to 133 K; during 100 110 100 100 110 100 100 110 100 110 100 100 110 100 100 100 100 100	•	51	Bulleck, G.	1956	>	1174-1198		The above specimen heating at a rate of 0.25 K min ⁻¹ .
 19 kurfman, L., Leyenaar, A., and Marvey, J.S., Cloumberty, L.V., and Misa, R.J. 1943 kurfman, L., Leyenaar, A., and Marvey, J.S., Frogress in Very High Pressure Research, p. 89, villey, Worked angestic resistivity: plangestic) = p - 0.0297 (1-0.0029); values from table. 101e 130 Morris, D.M. 1897 B 273-1036 Specimen A Charcoal Iron; from Messr. Jos. Sankey and Sons: ring shape specimen of cross sectional area 0.131 cs⁻¹ and mean ring diameter 2.35 cs; density 7.775 g cs⁻¹; measured during heating. 102e 130 Morris, D.M. 1897 B 273-1323 Specimen A Charcoal Iron; from Messr. Jos. Sankey and Sons: ring shape specimen of cross sectional area 0.131 cs⁻¹ and mean ring diameter 2.35 cs; density 7.775 g cs⁻¹; measured during to 1193 K; measured during cooling after heated to 1321 K; Curis temperature 1068 K. 102 130 Morris, D.M. 1897 B 273-1323 Specimen A choce specimen after reheating to 1193 K; measured during cooling after heated to 1321 K; Curis temperature 1068 K. 104 130 Morris, D.M. 1897 B 273-1099 Specimen B constituent in for Messr. Indiang cooling after annealing at 1113 K; Curis viab cross sectional area 0.143 cs⁻¹ and santed during cooling after annealing at 1113 K; Curis canter into for Messr. 	1	5	Buildet, G.	1956	>	1163-1186		The above specimen cooling at a rate of 0.25 K min ⁻¹ .
 101e 130 Morris, D.M. 1397 B 273-1036 Specimen A Charcoal Iron; from Messr. Jos. Sankey and Sons; ring shape specimen of cross sectional area 0.131 cm² and wean ring diameter 2.35 cm; density 7.775 g cm⁻¹; measured during heating. 102e 130 Morris, D.M. 1897 B 273-1323 Specimen A The above specimen; measured during cooling after heated to 1323 K; Curfe temperature 1068 K. 103e 130 Morris, D.M. 1897 B 289-1158 Specimen A The above specimen imeasured during cooling after heated to 1323 K; Unite, D.M. 1897 B 289-1158 Specimen A The above specimen after reheating to 1193 K; measured during cooling. 104a 130 Morris, D.M. 1897 B 273-1099 Specimen B 0.075 impurities, including C, P and Si, and traces of Mn; Swedish transformer from from Messr. Jos. Sankey and Sons; ring shape specimen vith cross sectional area 0.143 cm² and mean ring diam 2.23 cm; density 7.461 g cm⁻⁹; measured during cooling at 1113 K; Curfe 	2	5	Kaufaan, L., Clougherty, E.V., and Meise, R.J.	1963		325-1425		Specimen same as used in Kaufmann, L., Leyenaar, A., and Harvey, J.S., Progress in Very High Pressure Research, p. 89, Wiley, New York, 1961; swaged; $\alpha \gamma \gamma$ transition 1183 K; resistivity calculated from reported magnetic resistivity: $\rho(\alpha_{S}) = \rho - 0.029T$ (1-0.002P); values from table.
 102* 150 Norris, D.M. 1897 B 273-1323 Specimen A The above specimen; measured during cooling after heated to 1323 K; Lurie temperature 1068 K. 103* 130 Norris, D.M. 1897 B 289-1158 Specimen A The above specimen after reheating to 1193 K; measured during cooling. 104* 130 Norris, D.M. 1897 B 273-1099 Specimen B 0.075 impurities, including C, P and S1, and traces of Mn; Swedish transformer from from Messr. Jos. Sankey and Sons; ring shape specimen vith cross sectional area 0.143 cm² and mean ring diam 2.23 cm; density 7.461 g cm⁻³; measured during cooling at 1113 K; Curie temperature 1055 K. 	101*	150	Morris, D.M.	1897	•	273-1036	Specimen A	Charcoal Iron; from Messr. Jos. Sankey and Sons; ring shape specimen of cross sectional area 0.131 cm^2 and mean ring diameter 2.35 cm ; density 7.775 g cm^{-3} ; measured during heating.
1034 150 Morris, D.M. 1897 B 289-1158 Specimen A The above specimen after reheating to 1193 K; measured during cooling. 1044 150 Morris, D.M. 1897 B 273-1099 Specimen B 0.075 impurities, including C, P and S1, and traces of Mn; Swedish transformer from from Messr. Jos. Sankey and Sons; ring shape specimen with cross sectional area 0.143 cm ² and mean ring diam 2.23 cm; density 7.461 g cm ⁻² ; measured during cooling after annealing at 1113 K; Curie temperature 1055 K.	102*	150	Norris, D.M.	1897	æ	273-1323	Spectmen A	The above specimen; measured during cooling after heated to 1323 K; Curie temperature 1068 K.
10.075 impurities, including C, P and SI, and traces of Mn; Svedish transformer from from Messr. Jos. Sankey and Sons; ring shape specimen with cross sectional area 0.143 cm ² and mean ring diam 2.23 cm; density 7.461 g cm ⁻⁹ ; measured during cooling after annealing at 1113 K; Curie temperature 1055 K.	101	81	Morris, D.M.	1897	a	289-1158	Specimen A	The above specimen after reheating to 1193 K; measured during cooling.
	104.	130	Morris, D.M.	1897	\$	273-1099	Specimen B	0.075 impurities, including C, P and SI, and traces of Mn; Swedish transformer iron from Messr. Jos. Sankey and Sons; ring shape specimen with cross sectional area 0.143 cm ² and mean ring diam 2.23 cm; density 7.461 g cm ⁻³ ; measured during cooling after annealing at 1113 K; Curie temperature 1055 K.

.

	. Author (s)	Year	Nethod Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
2	0 Motris, D.M.	1897	n î	273-1423	Specimen B	The above specimen measured during cooling after annealing at 1423 K Curie temperature 1051 K.
61	0 Arajs, S., Schwerer, F.C., and Fisher, R.M.	1969	~	4.2		99.9 ^{\pm} pure; electrolytic; about 5 mm in diam and 50 mm long.
11	2 Schwerer, F.C., Conroy, J.W., and Arajs, S.	1969	۲	4.5-300		0.002 C and 0.001 N, "high purity iron standard"; 0.508 cm in diam and 5 cm long; annealed at 1273 K for 1 week under vacuum; machined, reannealed at 1123 for 2 h; data at T \geq 50 K calculated from reported residual resistivity (0.08 x 10 ⁻⁶ R m) and smoothed ideal resistivity (from graph); measured with a current of 0.1 A.
3	l Shirakawa, Y.	1939		78-1123		0.05 P and Si each, 0.04 C, 0.02 Co and Mn each, 0.01 Al and 0.003 S; electrolytic from Nippon-Deukai-Seitetausho; 0.0617 cm in diam and 5.25 cm long; annealed at 1273 K for 1 h under vacuum with specimen axis in the east-west direction; slow-coded; lead wires of nickel soldered by pure silver; reannealed at 1123 K for 1 h under vacuum and slow-cooled; measurement done with sample axis in east-west direc- tion.
4	l Hayer, A.R.	1161	>	273-1273		Chemically pure; '0.015 Si02, 0.004 Cu and Ni each, <0.001 Mn and trace S1; from Kahlbaum; impurities analyzed by Physikalisch-Technischen Reichaanstalt; measured by AC voltage-current method; smoothed values from table; except for value at 293K which is measured separately by a DC voltage-current method.
61	l Meyer, A.R.	1161	٨	273-1273		99.94 pure charcoal iron from Armeco; other information same as above.
19	l Meyer, A.R.	1161	٨	273-1173		<0.008 S, 0.007 P and traces C, Cu, Mn, and Si; from Langbein- Pfunhauser-Werke; other information same as above.
~	l Lavin, E.S., Ayushine, G.D., and Gel'd, P.V.	1972	æ	1923		99.988 pure, carbonyl iron class V-3; measurements carried out in aluminum or zirconium oxide crucibles covered with lapped lids in purified helium at a pressure of 760 mmHg; pure tungsten used as comparison standard.
19	2 Cumenyuk, V.S. and Lebedev, V.V.	1959		309~1718		High purity iron obtained by vacuum distillation; total impurity 0.023 estimated from residual resistivity; specimen $3-6$ mm in diam and $50-100$ mm long; annealed at 1373 K for 4 h in high vacuum; measured in a vacuum of $10^{-5}-10^{-6}$ mmHg.
51	6 Beum, B.A., Gel'd, P.V., and Tyagunov, G.V.	1967	t	1551-2018		99.99 pure carbonyl iron; remelted in a hydrogen atm and degassed in vacuum in the molten state; measured by "refluence method" of Baum et al., Izv. Akad. Nauk SSSR, Neorg. Materialy, <u>1</u> , 1289(1965) in pure helium at a pressure of 780 mamig; tungsten used as comparison standard

<pre>1# 195 Tanaka, K. and 1972 A 77,298 RE 0.0060 S, 0.0040 C, Mn Watanabe, T. Unite and Cast in vacuum; sur and cast in vacuum; sur in diam; wire specimen</pre>	Composition (weight percent), Specifications and Remarks 99.9 ⁺ pure: liquid state; contained in a 10 mm 1.D. recrystall slumina crucible at a pressure of 0.05-01 mmdg; data of Saito et al. (Bull. Kes. Inat. Min. Dress. Metall., Tohoku Univ. 22. 67, 109, 1969) used for calculating speciemn volume. 0.02 Mm, 0.01 Cr, and <0.01 Co; single crystal; 0.2 x 0.3 x 1.5 polished and acried in BG1 + 10X H20; Curte temperature 1040 inncorrected for thermal expansion; data in table form supplied first author. "High purity"; measured in purified helium. "High purity"; measured in purified helium. "Pure"; obtained by some measured by an exploiding wire techniqu heated by an almost rectanguiar shape pulse ('JO ⁵ s); current "Pure"; obtained by some mealting; residual resistivity ratio 23 temperature dependent part of resistivity reported. "Pure"; obtained by some melting; residual resistivity ratio 23 temperature dependent part of resistivity reported. Same as the above. Specimen contained in either alumina or zirconia crucible, meas in a mark of helium. 0.0166 M, 0.00048 C, 0.0003 60, 0.0003 51, 0.0002 Cu and Mm each, onool M, and P each; grain diam 50 4 20 um; 0.5 mm in diam and long; from Johnson and Matthey; heated at 1246 K for 48 h in we drogen; and 2 h in vacuum; carbon or nitrogen in solution (0.0002 0.0060 S, 0.00040 C, M and Si each; 0.0003 51, nould onooz Cu; re- electrolytic from supplied by benko Co; melted by induction he and case in vacuum; surface layer removed; hor-swaged into rod in diam; wire speciaen prepared in similar manner as above.	Name and Specimen JM RE	Temp. Range, K 1773-1898 1873 1873 1809 2.4-63 2.4-78 1573,1873 1573,1873 1573,298 77,298	Tethod Ceed dd A A A A A A A A A A A A A A A A A A	Year 1972 1974 1976 1976 1976 1971 1972 1972	Author(a) Author(a) Choo, T. and Yagi, T. Ono, Y. and Yagi, T. Saehra, M.S., Capan, V.L., and Silinsky, P. Dubini, E., and Vacolin, N.A. Labedev, S.V., and Vacolin, N.A. Labedev, S.V., and Vacolin, N.A. Labedev, S.V., and Vacolin, N.A. Fert, A. and Campbell, I.A. Fert, A. and Campbell, I.A. Baum, B.A., Tanaka, K. and Matanabe, T. Matanabe, T.	Raf. H	
	0.0400 Ti; "C, N, O and B atoms in solid solution extremely low pared from re-electrolytic iron by alloying with Ti; specimen p tion same as the above except for no annealing in wet hydrogen.	E	77,298	<	1972	Tanaka, K. and Watanabe, T.	195	
a 195 Tanaka, K. and 1972 A 77,298 RE 0.0060 S, 0.0040 C, Mn	0.0060 S, 0.0040 C, Mn and Si each;	RE	77,298	۲	1972	Tanaka, K. and	195	
	0.0166 N, 0.0048 C, 0.0036 O, 0.0003 Si, 0. <0.0001 Al and P each; grain diam $50 \pm 20 \mu$ long; from Johnson and Matthey; heated at 1 drogen; and 2 h in dry hydrogen; cold rolle annealed at 823 K for 1 h in dry hydrogen; 923 K for 3 h in vacuum; carbon or nitrogen	£	77,298	<	1972	Tanaka, K. and Watanabe, T.	195	•
195 Tanaka, K. and 1972 A 77,298 JM 0.0166 N, 0.0068 C, 0.0 Watanabe, T. <0.0001 Al and P each;	Specimen contained in either alumina or zircon in an atm of helium.		1573,1873	œ	1971	Baum, B.A., Tyagunov, G.V., Cel'd, P.V., and Khasin, G.A.	159	_
 159 Baum, B.A., 1971 R 1573,1873 Specimen contained in e fragunov, G.V., Tyagunov, G.V., and Tyagunov, G.V., and Khasin, G.A. 195 Tanaka, K. and 1972 A 77,298 JM 0.0166 N, 0.0048 C, 0.0 (not set in the fraction of the fr	Same as the above.		2.4-78	<	1976	Fert, A. and Campbell, I.A.	127	
127 Fert, A. and 1976 A 2.4-78 Same as the above. Campbell, I.A. 1971 R 1573,1873 Specimen contained in e in an atm of helium. 159 Buum, B.A., 1971 R 1573,1873 Specimen contained in e in an atm of helium. 159 Buum, B.A., 1971 R 1573,1873 Specimen contained in e in atm of helium. 159 Buum, B.A., 1971 R 1573,1873 Specimen contained in e in atm of helium. 150 Buum, B.A., Image: G.V., Image: G.V., Image: G.V., Image: G.V., 195 Tanaka, K. and 1972 A 77,298 JM 0.0166 M, 0.0048 C, 0.0 Vatanabe, T. Image: True 1972 A 77,298 JM 0.0166 M, 0.0048 C, 0.0 Vatanabe, T. Image: Group of the in atm of the achine of the in atmost of the in atmosto	"Pure"; obtained by sone melting; residual resistiv temperature dependent part of resistivity reported.		2.4-63	×	1976	Fert, A. and Campbell, I.A.	121	
 127 Fert, A. and 1976 A 2.4-63 "Fure"; obtained by son temperature dependent p campbell, I.A. 127 Fert, A. and 1976 A 2.4-78 Same as the above. Campbell, I.A. 139 Baum, B.A., 1971 R 1573,1873 Specimen contained in e fin an atm of helium. Cal'd, P.V., and Khasin, G.A. 195 Tanaka, K. and 1972 A 77,298 JM 0.0166 N, 0.0048 C, 0.0 % attanabe, T. 195 Tanaka, K. and 1972 A 77,298 JM 0.0166 N, 0.0048 C, 0.0 % attanabe, T. 	<pre><0.2 C; in liquid state; measured by an exploding wir heated by an almost rectangular shape pulse ($^{100.5}$ s); 14 x 10¹⁶ A/m²; voltage and current measured by pulse</pre>		1809	+	1974 d	Lebedev, S.V., Savvatimekii, A.I., an Smirnov, Yu.B.	194	
 194 Lebedev, S.V., 1974 + 1809 Sarvatiamitii, A.I., and Sairnov, Yu.B. Sairnov, Yu.B. 127 Fert, A. and 1976 A 2.4-63 "Pure": obtained by son temperature dependent p tentus. 139 Baum, B.A., 1971 R 1573,1873 Specimen contained in e tentus. C.e.i (d, P.V., and the tentus. C.e.i (d, P.V., and the tentus. C.e.i (d, P.V., and tentus. C.e.i (d, P.V., and tentus. C.e.i (d, P.V., and tentus. T.e.i (d), P.V., and tentus. T.e.i (d), P.V., and tentus tentus	"High purity"; messured in purified helium.		1873		1969	Dubini, K., Esin, O.A., and Vecolin, N.A.	19 3	
 193 Dubini, E., 1969 1873 "High purity"; messured tests (a factor), and vacolin, N.A. 194 Labodev, S.V., and Sarraciamiti, A.I., and 1976 A 2.4-63 "Pure": obtained by son temperature dependent p Campbell, I.A. 127 Tert, A. and 1976 A 2.4-63 "Pure": obtained by son temperature dependent p Campbell, I.A. 128 Eart, A. and 1976 A 2.4-78 Same as the above. Campbell, I.A. 129 Baum, B.A., 1971 R 1573,1873 Speciaen contained in e thore. Cambbell, I.A. 139 Baum, B.A., 1971 R 1573,1873 Speciaen contained in e thore. Cambbell, I.A. 139 Tanka, K. and 1972 A 77,298 JH 0.0166 M, 0.0048 C, 0.0 Matanabe, T. 139 Tanka, T. and 1972 A 77,298 JH 0.0166 M, 0.0048 C, 0.0 Matanabe, T. 	0.02 Mn, 0.01 Cr, and <0.01 Co; single crystal; 0.2 x 0 polished and etched in BCl + 10% M2O2; Curie temperatur uncorrected for thermal expansion; data in table form s first author.		1000-1087	<	1974	Seehra, M.S., Capan, V.L., and Silinsky, P.	149	
 14) Seekra, M.S., 1974 A 1000-1067 0.02 km, 0.01 Cr, and c Capana, V.L., and C Capana, C V. C Capana, V.A. 1969 1974 1974 1974 1974 1974 1974 1974 197	99.9 [†] pure; liquid state; contained in a 10 mm I.D. recr alumina crucible at a pressure of 0.05-0.1 mmHg; density Saito et al. (Bull. Res. Inst. Min. Dress. Metall., Toho 25, 67, 109, 1969) used for calculating specimen volume.		1773-1898	Q4 Q4	1972 1977	Ono, T. and Yagi, T. Ono, Y.	8	
89 One, Y. and Yagi, T. 1372 R 1773–1896 99.9 ⁺ pure: liquid atat aunita cruchls at a Saito et al. (blu). Ness Saito b.N., and 1974 A 1000-1087 0.02 Ms, 0.01 Cr, and closen and etched in uncorrected for thermal. 193 Dubini, E., Saito, N.A. 1969 1873 0.02 Ms, 0.01 Cr, and 	Composition (weight percent), Specifications and Re	Name and Specimen Designation	Temp. Range, K	Method Used	Year	Author (s)	. 1 2 2 2	

* Not shown on either figure.

 I.B. Manulater, H., and N. M. (2) A. (2) and the strategy and former constant to the strategy for the strategy and former constant to the strategy for the strategy and former constant to the strategy and strategy and	. 	žź	Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
 Wannelane, N., et el. Wannelane, N., et el. A 4.2 Banlar to the above except containing 0.003 interestitial C. Wannelane, N., et el. A 4.2 Stanlar to the above except containing 0.003 interestitial C. Wannelane, N., et el. A 4.2 Mannelane, N., et el. A 4.2 Stanlar to the above except containing 0.003 interestitial C. Mannelane, N., et el. A 4.2 Mannelane, N., et el. A 4.2 Mannelane, N., et el. I) A 4.2 Stanlar to the above except containing 0.03 N. Mannelane, N., et el. I) A 4.2 Mannelane, N. Mannelane, N., et el. I) A 4.2 Mannelane, N. Mann	1254	136	Wagenblast, K., Schwerer, F.C., and Horak, J.A.	1971	<	4.2		0.005 interstitial C; specimen prepared from vacuum melted iron with <0.1 at.% impurities; drawn and evaged to 0.6 mm in diam and 11.3 cm long wire; annealed at 1023 K for 15 min; annealed 1058 K for 5 h in wet hydrogen and furnace cooled in dry hydrogen to reduce carbon and nitrogen to 0.004 and 0.0004 at.%, respectively; carbonized by heating at 938 K for 16 h in a hydrogen-methane mixture; quenched in brine.
1279 194 Wagmablast, R., et el. 1971 A 4.2 Staliar to the above except containing 0.005 interestitial C. 1289 196 Wagmablast, R., et el. 1971 A 4.2 Staliar to the above except containing 0.005 interestitial C. 1290 196 Wagmablast, R., et al. 1971 A 4.2 0.012 interestifial With architer 0.095 interestifial C. 130 196 Wagmablast, R., et al. 1971 A 4.2 Staliar to the above except containing 0.057 W. 1310 196 Wagmablast, R., et al. 1971 A 4.2 Staliar to the above except containing 0.104 W. 1310 196 Wagmablast, R., et al. 1971 A 4.2 Staliar to the above except containing 0.104 W. 1310 196 Wagmablast, R., et al. 1971 A 4.2 Staliar to the above except containing 0.104 W. 1311 196 Wagmablast, R., et al. 1971 A 4.2 Staliar to the above except containing 0.104 W. 1312 197 A 4.2 Staliar to the above except containing 0.104 W. 198 1313 197 A 4.2 3.13 at	1264	196	Wagenblast, H., et al.	1971	<	4.2		Similar to the above except containing 0.022 interstitial C.
 Warenblanc, N., et al. [37] Matter to the above except containing 0.108 N. Warenblanc, N., et al. [39] A. 4.2 Statiar to the above except containing 0.108 N. Warenblanc, N., et al. [39] A. 4.2 Statiar to the above except containing 0.138 N. Price, D.C. and [39] A. 4.2 Statiar to the above except containing 0.138 N. Wattiffaaa, G. Wattif	127#	196	Wagenblast, N., et al.	1971	¥	4.2		Similar to the above except containing 0.005 interstitial C.
129 19 4.1 4.2 0.012 Interesticial N; specialmy preparation stailar to the above accept containing 0.007 N. 129 19 19 4.2 3141ar to the above accept containing 0.007 N. 131 19 Megenblast, N., et al. 1971 A. 4.2 3141ar to the above accept containing 0.104 N. 131 19 Megenblast, N., et al. 1971 A 4.2 3141ar to the above accept containing 0.104 N. 132 19 Megenblast, N., et al. 1971 A 4.2 3141ar to the above accept containing 0.104 N. 132 19 Megenblast, N., et al. 1971 A 4.2 3141ar to the above accept containing 0.104 N. 133 19 A 4.2 314ar to the above accept containing 0.104 N. 4.22 134 10 A 4.2 314ar to the above accept containing 0.104 N. 4.2 135 19 A 4.2 314ar to the above accept containing 0.104 N. 4.2 135 19 A 4.2 314ar to the above accept containing 0.104 N. 4.2 4.2 0.012 Interesticity 0.104 N. 4.2 0.012 N. 0.11100 N. 0.012 N	1284	196	Wagenblast, H., et al.	1791	4	4.2		Similar to the above except containing 0.098 interstitial C.
 How 196 Wagenblart, M., et al. 1971 A 4.2 Stallar to the above except containing 0.105 W. Wagenblart, M., et al. 1971 A 4.2 Stallar to the above except containing 0.138 W. Wagenblart, M., et al. 1971 A 4.2 Stallar to the above except containing 0.138 W. Price, D.C. and 1973 A 4.2-276 Price, D.C. and 1973 A 4.2-276 Price, D.C. and 1973 A 4.2-276 Price, D.C. and 1974 A 4.2-276 Price above except containing 0.138 W. Walliews, G. and 1973 A 4.2-276 Price, D.C. and 1973 A 4.2-276 Price above except containing 0.138 W. Walliews, G. and 1974 A 4.2-276 Price above except containing 0.138 M. Walliews, T. and 1974 A 4.2-276 Price above except containing 0.138 M. Walliews, T. and 1974 A 4.2-276 Stallar to the above except containing 0.138 M. Walliews, T. and 1974 A 4.2-276 Stallar to the above except containing 0.138 M. Walliews, T. and 1974 A 4.2-276 Stallar to the resultivity, pi, P = P₁ + p(4.2 M). Modryen, Ta Walliews, T Startin, A.W. 1962 R 1011-2000 Price 0.05 A 10 Figures detect containing 0.148 M. Startin, A.W. 1962 R 1011-2000 Price 0.05 A 10 Figures detect containing 0.148 M. Stallar to the resultivity plane figures detect containing 0.148 M. Stallar to the resultivity of the resultivity plane tablement to the respected containing 0.148 M. Stallar to the resultivity of the resultivity plane tablement to the respected containing 0.15 M. Stallar to the resultivity above 1 tablement to the respected containing 0.15 M. Stallar to the resultivity plane tablement to the respected containing 0.15 M. Stallar to the resultivity plane tablement to the respect of containing 1.4 Points 100 M. Stallar to the resultivity plane tablementer tablet (1.4, 0.0, 0.10, 1.0, 1.0, 1.0, 1.0, 1.0, 1.	129*	196	Wagenblast, H., et al.	1971	۲	4.2		0.012 interstitial N; specimen preparation similar to the above except nitrogenized by heating at 748 K in a hydrogen-ammonia mixture.
131 196 Wagenblast, H., et al. 1971 A 4.2 Staliar to the above except containing 0.104 H. 132 196 Wagenblast, H., et al. 1971 A 4.2 Staliar to the above except containing 0.138 H. 137 196 Wagenblast, H., et al. 1971 A 4.2 Staliar to the above except containing 0.138 H. 138 197 7 4.2 Staliar to the above except containing 0.138 H. 138 197 7 4.2 Staliar to the above except containing 0.138 H. 138 197 7 4.2 Staliar to the above except containing 0.148 H. 138 197 7 4.2 Staliar to the above except containing 0.158 H. 138 197 7 4.2 Staliar to the above except containing 0.158 H. 138 197 Vasiler in vascum at 1173 K for 2 D. Madreter extended of the above except contains of except to the above except to the abov	130*	196	Wagenblast, H., et al.	1791	۷	4.2		Similar to the above except containing 0.057 N.
 Wagenblast, H., et al. 1971 A 4.2 Wagenblast, H., et al. 1971 A 4.2 Wagenblast, H., et al. 1971 A 4.2 Price, D.C. and 1973 A 4.2-216 Price, D.C. and 1973 A 4.2-216 Prise (1) 2 0.2 x 10 cm i applied by Johnson and Matt Villiams, G. Wall'evs, R.P. and 1973 A 4.2-216 Wastl'evs, R.P. and 1973 A 4.2-216 Wastl'evs, R.P. and 1973 A 4.2-216 Wastl'evs, R.P. and 1974 A 10-1149 Tot 2 x 10 cm i applied by Johnson and Matt Price, D.C. and 1974 A 10-2716 Wastl'evs, R.P. and 1974 A 132-775 Wastl'evs, R.P. and 1974 A 132-773 Wastl'evs, R.P. and 1974 A 132-773 Wastl'evs, R.P. and 1974 A 132-773 Schwerz, F.C. and 1970 Y 4.2-1200 Schwerz, F.C. and 1970 Y 4.2-1200	*IEI	196	Magenblast, H., et al.	1971	V	4.2		Similar to the above except containing 0.104 N.
 137 136 Wagenblast, N., et al. 1971 A 4.2 138 136 Wagenblast, N., et al. 1973 A 4.2-276 99965 preci 0.15 x 0.2 x 10 cm; unpiled by Johnson and Matt Williams, G. 135 197 Vasil'eva, R.P. and 1974 373-775 99965 preci 0.15 x 0.2 x 10 cm; unpiled y Johnson and Matt Bartyon, Ya. 136 148 Goherer, F.C. and 1974 373-773 No details reported (4.2 K) = 0.3300 x 10³ fm and respected of each seast set of the resistivity, pri p = p_T + p(4.2 K). 136 148 Goherer, F.C. and 1970 V 4.2-1200 Octails reported (4.2 K) = 0.3300 x 10³ fm and respected of the resistivity, pri p = p_T + p(4.2 K). 136 148 Goherer, F.C. and 1970 V 4.2-1200 Octails reported (4.2 K) = 0.034 x 10⁶ fm and respected of the resistivity, pri p = p_T + p(4.2 K). 137 8 Goherer, F.C. and 1970 V 4.2-1200 Octails reported (4.2 K) = 0.034 x 10⁶ fm and respectator deperture dependence. 137 9 Samurin, A.M. 1962 R 1811-2000 Meanured by the rotaxing field action maged; average of two ape (4.1 K). A.M. 1962 R 1811-2000 Meanured apalater the resistivity value fmoler atom respected Sections from graph. 138 135 Powell, R.W. 1953 - 279-1793 Meanured Matther frames from graph. 138 135 Powell, R.W. 1953 - 279-1793 Meanured Matther value from septemation respected Sections from septemation from the resistivity value calculated from respected for the resistivity above 1 meanured under vacuums resistivity above 1 arcs emported for the part from graph. 138 135 Powell, R.W. 1953 - 279-1793 Meanured Matther Values from graph. 	132*	196	Wagenblast, H., et al.	1971	V	4.2		Similar to the above except containing 0.138 N.
 134 80 Price, D.C. and 1973 A 4.2-276 99.985 pure; 0.15 x 0.2 x 10 cm; supplied by Johnson and Matt Villiams, G. 135 197 Vasil'eva, R.P. and 1974 373-773 Rot of the resistivity, pr; p = p_T + p(4.2 K). 136 148 Schwerer, F.C. and 1970 V 4.2-1200 04.6 m in diam coorted from swaged; average of two are ouddy. L.J. 137 94 Samarin, A.M. 1962 R 1011-2000 Meanued by the rotating field activity of an alter apperature distribution. A.M. 1962 R 2000 05. (1.1.47-0.0.10) fin and temperature destribution. A.M. 1962 R 1011-2000 01. (1.1.47-0.0.10) fin and temperature destribution. A.M. 1962 R 1011-2000 01. (1.1.47-0.0.10) fin and temperature destribution. A.M. 1962 R 1011-2000 01. (1.1.47-0.0.0.4 x 10⁻⁶ fin activity value of anothen atm apperation. A.M. 1962 R 1011-2000 00. (1.1.47-0.0.0.4 x 10⁻⁶ fin activity value of anothen atm apperation. A.M. 1962 R 1011-2000 01. (1.1.47-0.0.0 x 10⁻⁶ fin activity value of anothen atm apperation. (1.1.47-0.00 x 10⁻⁷ fin activity value of anothen atm apperation. (1.1.47-0.00 x 10⁻⁷ fin activity above 1.1.41, not on a stativity above 1.1.41, not on attivity above	133*	196	Wagenblast, H., et al.	1971	۲	4.2		Similar to the above except containing 0.158 N.
 135 197 Vasil'eve, R.P. and 1974 373-773 No details reported. 136 148 Schwerer, F.C. and 1970 V 4.2-1200 0.64 x 10⁻⁶ fined iron; swaged; average of two spe 0.40, μ.J. 137* 94 Samarin, A.M. 1962 R 1811-2000 Measured by the rotating field method in a helium atm: apparent ibrated against the resistivity value of moleculated from reported 5et 139; resistivity value of moleculated from reported 5et 139; resistivity value of moleculated from reported 11.47-0.50 x 10⁻⁷ 7(C)] x 10⁶ dm⁻¹cm⁻¹; upper temperature limit 2000 K. 138 135 Powell, R.W. 1953 + 279-1793 "High purity" iron; measured under vacuum; resistivity above 1 are amoothed values from graph. 	134	80	Price, D.C. and Williame, G.	1973	۹.	4.2-276		99.9985 pure; 0.15 x 0.2 x 10 cm; supplied by Johnson and Matthey Co.; prepared by cold rolling rod stock between Melinex sheets; etched; annealed in vacuum at 1173 K for 2 h; guenched; resistivity calculated from reported $\rho(4,2 \text{ K}) = 0.3300 \times 10^{-6} \Omega \text{m}$ and temperature dependent part of the resistivity, ρ_T ; $\rho = \rho_T + \rho(4,2 \text{ K})$.
136 143 Schwerer, F.C. and 1970 V 4.2-1200 V.B. m in diam; zone-refined iron; waged; average of two spectrum days. L.J. Cuddy, L.J. 137* 94 Samarin, A.M. 1962 R 1811-2000 Measured by the rotating field method in a helium atm; apparate the resistivity value of molten iron reported Set 139; resistivity value of aolten iron reported Set 139; resistivity value of aolten iron reported conductivit [1.47-0.50 x 10 ⁻³ 7(C)] x 10 ⁴ dm ⁻¹ cm ⁻¹ ; upper temperature limit 2000 K. 136 155 Powelli, R.W. 1953 + 279-1793 "High purity" iron; measured under vacuum; resistivity above 1 are smoothed values from graph.	135	197	Vasil'eva, R.P. and Kadyrov, Ya.	1974		373-773		No details reported.
<pre>137* 94 Samarin, A.M. 1962 R 1811-2000 Measured by the rotating field method in a helium atm; apparat 157* 139; reaistivity value of molten from reported 1647-0.50 x 10⁻³T(C)] x 10⁴ dm⁻¹cm⁻¹; upper temperature Mait 11.47-0.50 x 10⁻³T(C)] x 10⁴ dm⁻¹cm⁻¹; upper temperature Mait 2000 K. 138 155 Powell, R.W. 1953 + 279-1793 "High purity" from; measured under vacuum; resistivity above 1 are smoothed values from graph.</pre>	136	148	Schwerer, F.C. and Cuddy, L.J.	1970	Λ	4.2-1200		$\sim 1.8~\text{mm}$ in diam; zone-refined iron; swaged; average of two specimens; $\rho(4.2~\text{K}) \sim 0.04~\text{x}~10^{-8}~\Omega~\text{m}$; smoothed values from graph.
<pre>136 155 Powell, R.W. 1953 + 279-1793 "High purity" from; measured under vacuum; resistivity above l are smoothed values from graph. * Not shown on either figure.</pre>	137*	46	Semarin, A.M.	1962	6 4	1811-2000		Measured by the rotating field method in a helium atm; apparatus cal- ibrated against the resistivity value of molten iron reported in Data Set 139; resistivity value calculated from reported conductivity: $[1.47-0.50 \times 10^{-3}T(C)] \times 10^{4} dm^{-1}cm^{-1}$; upper temperature limit assumed 2000 K.
* Not shown on either figure.	138	155	Powell, R.W.	1953	•	279-1793		"High purity" iron; measured under vacuum; resistivity above 1623 K are smoothed values from graph.
		Evolts	on either figure.					

TABLE 8. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF IRON Fe (continued)

A DESCRIPTION OF THE OWNER OF THE

and the second second

فللمتكافية ومعمده كالمتكار مايدية فسمانات متعانيتها بتقريبات ويتعاد
	<u>,</u>	Author (a)	Year	Me thod Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
139	51	Powell, R.W.	1953	+	1181		In molten liquid state; resistivity measured by immersing a specially constructed alumins tube in molten iron; current and potential contacts made by tungten rods through separate holes, in the middle of the wall of the tube, which are open to the axial hole through small up-turned channels; reported value mean of 24 measurements with two heating rates of the specimen and with two different durations of the measuring current.
140#	108	Schimank, H.	1914	¢	20-273	Pe I	High grade pure electrolytic iron; from Kalbaum; 1-2 m long; drawn by Heraeous of Nanau.
141*	108	Schimank, H.	1914	2 2	20-273	Fe 11	Same as the above except annealed in nitrogen atm.
142*	198	Holborn, L.	1919		80-784	Fe I ₁	Electrolytic iron, from vacuum melted iron supplied by Firma W.C. Herseous; wire specimen 0.2 mm in diam; heated for several min at 773 K.
143#	198	Holborn, L.	1919		81-761	Fe I ₂	Same as the above except annealed at 573 K for 3 h.
144*	198	Holborn, L.	1919		80-572	Fe II	0.004 Co, Cu and Nieach, 0.001Mn, traces of C, 0 and Si; "Nitrateisen" made from iron nitrate by Firma C.A.F. Kalbaum; drawn from 5 um to 0.2 mm in diam; annealed at 653 K for 3 h.
145#	104	Meissner, M. and Voigt, B.	1930	+	1.4-273	fe l	Specimen same as for Data Set 142; 0.2 mm in diam and 55 mm long; distance between potential contacts 50 mm; tempered; measured by com- pensation method; resistivity calculated from reported resistance ratio, ice point resistance (0.149 ß) and sample dimensions.
146*	104	Meissner, M. and Voigt, B.	1930	t	1.4-273	Fe 2	Specimen same as for Data Set 144; 0.2 mm in diam and 59.7 mm long; distance between potential contacts 56.6 mm; tempered; measurement method and resistivity calculation same as above.
147	104	Meissner, M. and Voigt, B.	0661	+	1.4-273	Fe 2*	Same as the above specimen except 60 mm long and distance between potential contacts 56.3 mm.
148	101	Meissmer, M. and Voigt, B.	1930	t	2.0-273	Fe 3	Specimen same as for Data Set 10; tempered; 1.0 mm in diam and 33.0 mm long; distance between potential contacts 30.0 mm; measurement method and resistivity calculation same as above.
149	101	Meissner, M. and Voigt, B.	1930	t	2.0-273	Fe 4	Electrolytic iron from Firma Heraeus; 1.0 mm in diam and 58.2 mm long; stretched; course grained; distance between potential contacts 53.4 mm; measurement method and resistivity calculation same as above.
1504	104	Meissner, M. and Voigt, B.	0661	+	1.4-273	Fe 5	Specimen obtained from Dr. Kreussier; 0.1 am in diam and 58.6 mm long; distance between potential contacts 54.2 mm; measurement method and resistivity calculation same as above.
* Not	shown	on either figure.					

3 8 4	122	Author (s)	Tear	Me thod Used	Temp. Renge, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
13	ş	Mainemer, N. and Yoigt, B.	0061	+	1.4-273	Fe 6	Same as the above specimen except 58.4 mm long and annealed at 573 K for 3 h; distance between potential contact 54.4 mm.
***	5	Heismer, N. and Yoigt, J.	0661	t	1.4-273	Fe 7	Electrolytic (5 times) iron from Firma Siemens and Matske; 0.3 mm in diam and 58.7 mm long; distance between potential contacts 54.0 mm; measurement method and resistivity calculation same as above.
5	Ŋ	Muleaner, N. and Yoigt, B.	0661	•	1.3-273	Fe 10	The above specimen annealed at red-bot, 15 h and etched; 57.5 wm long distance between potential contacts 51.7 wm.
*	101	Meisemer, M. and Voigt, B.	0661	t	1.4-273	Fe 8	Same as the above specimen except annealed at 573 K for 3 h; distance between potential contacts 54.4 mm.
ž	101	Meisener, N. and Voigt, B.	1930	•	1.4-273	Fe 9	Same as the above specimen etched; 57.8 mm long; distance between po- tential contacts 55.1 mm.
e 9	125	trusse ll, C.W., Christopher, J.E., and Coleman, R.V.	1970	4	0.3-1.2		<100> iron whisker; measured in a magnetic field of 570 Oe.
*15	٠	Matthiessen, A. and Voigt, C.	1864		273		Hard-drawn; resistivity value calculated from reported ratio of resistivities of silver and iron, with $p(silver)$ assumed to be 1.468 x 10^{-3} Ω m.
*	199	Potter, H.H.	1937		20-1130		99.96 pure; chief impurities are 0 and Si; from Messr. Adem Hilger; U-shape specimen 2 mm in diam and 8 cm long.
1	200	Ribbeck, F.	1926	+	273-1273		0.07 Mm, 0.014 P, and traces of Si, Cu, S and Cr; electrolytic; 0.3-0.4 cm ² x 10 cm; measured by compensation method with current 2-3 A.
ş	102	Bhegat, S.M., Anderson, J.R., and Wu, M.	1967		84-297		<pre><111> from whiskers; about 0.2-0.4 mm wide and 8 mm long; grown by hydrogen reduction of FeCl; either at room temperature using hydrogen saturated with water vapor or at 1023 K with a hydrogen flow rate of 300 ml/min; electropolished; measured in a longitudinal magnetic fie of 2 kG.</pre>
•19	202	Mussery-Tasey, G.	1950		194-1208		No details reported.
2	203 126	Sudovtaov, A.I. and Summeriko, E.E. Summeriko, E.E. and Sudovtaov, A.I.	1957 1962	~ ~	1.2-4.2		99.98 pure; polycrystalline specimen in the form of thin ribbons fro Hilger; $R(4.2K)/R(273K) = 3.9328 \times 10^{-2}$; resistance at 273K, 0.5091 R(T)/R(273K) = 3.92930 $\times 10^{-2}$ with T extrapolated to 0 K.
2	126	Sementeo, E.E. and Sudovteov, A.I.	1962	۲	1.3-20.3		>99.99 pure; grain size ~ 0.1 mm; ~ 0.1 mm "transverse dimension" 36 m long; needle-shaped specimen grown by distillation in vacuum; $R(T)/R(273K) = 3.9606$ x 10 with T extrapolated to 0 K; measured under condition where the earth's magnetic field is compensated by Helmhol colls; specimen demagnetized with a 50 cps magnetic field of decreasi applitude after each reversal in measuring current.

* Not shown on either figure.

Det: Set No.	Ref.	TABLE Author (s)	8. Year	EASUREMENT Method Used	INFORMATION Temp. Range, K	ON THE ELECTRICA Name and Specimen Designation	L RESISTIVITY OF IRON Fe (continued) Composition (weight percent), Specifications and Remarks
180	124	Beitchman, J.G., Trussel, C.W., and Coleman, R.V.	1970	~	0.4-1.2	T-7	The above specimen measured in a longitudinal magnetic field of 1230 De.
181	124	Beitchman, J.G., et al.	1970	¥	0.3-1.2	T-7	The above specimen measured in a longitudinal magnetic field of 1520 Oe.
1824	124	Beitchman, J.G., et al.	1970	~	1.0-4.1	T-7	The above specimen measured in a longitudinal magnetic field of 1150 Oe.
1834	124	Beitchman, J.G., et al.	1970	v	1.4-4.3	B-1	Single crystal; specimen axis in a <111> direction; measured in a longitudinal magnetic field of 1200 Oe.
1844	124	Beitchman, J.G., et al.	1970	۷	4.7-21	B-1	The above specimen, measured at higher temperatures.
185	205	Swartz, J.C. and Cuddy, L.J.	1970	>	4.2		Zone-refined iron; 0.13-0.40 mm in diam and 5-10 cm long; resistivity value calculated from reported $\rho(295k)/\rho(4.2K) = 180$, with $\rho(295k)$ taken to be 10.19 x 10^{-6} G m.
1861	611	Arajs, S., Oliver, B.F., and Michalak, J.T.	1967	¥	4.2	I	99.9966 pure; 0.0019 C, 0.0011 O and 0.0004 others (at. x); interfacial grain area 7.0 mm ⁻¹ ; 1 mm in diam and about 80 mm long; produced by oxidation zone refining (oxygen activity v 1).
1874	611 4	Arajs, S., et al.	1967	V	4.2	11	0.0019 C, 0.0018 O and 0.0042 others $(at.x)$; polycrystalline; interfacial grain area 14.3 mm ⁻¹ , 80 cm long.
1884	119	Arajs, S., et al.	1967	A	4.2	11	Same as the above except interfacial grain area 16.5 mm ⁻¹ .
1894	112	Fujii, T. and Morimoto, I.	1968	۲	4.2	Fe I	0.0300 C (determined by vacuum combustion method), 0.0100 N and 0 each (determined by vacuum fusion method, and 0.0015 total metallic impurity; polycrystalline material obtained from Johnson and Matthey Co.; formed into a bar 5 mm in diam and 20 cm long; swaged into cylindrical rod 2.7 mm in diam and 50 cm long; annealed at 1163 K; chemically pollished in a 500-1-500 solution of $H_2O-HF-C_2H_5OH$, removing a surface layer of 0.1 mm; resistivity value calculated from reported $\rho(295K)/\rho(4.2K)$, with $\rho(295K)$ taken to be 9.91 x 10^{-9} Am.
1904	112	Fuji, T. and Morimoto, I.	1968	۲	4.2	Fe I	Same specimen material as the above, prepared by a method similar to the above but exact treatment not given; resistivity calculated by some method as above.
*191	112	Fujii, T. and Morimoto, I.	1968	~	4.2	Fe II	0.0300 C, 0.0100 0, and 0.0015 N (determined by the same methods as for Data Set 189), and 0.0015 total metallic impurity; from the same specimen material as the above; zone-refined (1 pass at 3 mm min ⁻¹ in dry H ₂); other preparations same as the above except annealed at 1123 K for 20 h in a vacuum of 2 x 10^{-6} mm before chemical polishing; resistivity calculated by same method as above.
192*	112	Fujii, T. and Morimoto, I.	1968	~	4.2	Fe 111	0.0100 0, 0.0080 N, 0.0030 C (determined by same methods as for Data Set 189), and 0.0015 total metallic impurity; prepared from the same material and by a similar method as the above except decarbonized at 1023 K for 200 h in wet H_2 ; resistivity calculated by same method as above.
* Mot	shown	on either floure.					

Renarks	ar method as ulated by the			ethods as for -refined (1 pass sbove; resis-	ar method as ulated by the				race N (deter- (1 pass at er preparations	ar method as ulated by same		od O (determined (2 passes at m and 2 passes e above; resis-	g each, and sured by an d values from	
Composition (weight percent), Specifications and	Prepared from the same specimen material and by a simil the above, but exact method not given; resistivity calc same method as above.	Same as the above.	Same as the above.	0.0030 C, <0.0005 N, 0.0004 C (determined by the same m Deta Set 189); and 0.0015 total metallic impurity; zone at 0.3 mm min ¹ in dry H_2); other preparations same as tivity calculated by same method as above.	Prepared from the same specimen material and by a simil the above; but exact method not given; resistivity calc same method as above.	Same as the above.	Same as the above.	Same as the above.	0.0020 C, 0.0001 0, 0.015 total metallic impurity and t mined by same method as for Data Set 189); zone-refined 0.3 mm min ⁻¹ and 5 passes at 1 mm min ⁻¹ in dry H ₂); oth and restativity calculation same as the above.	Prepared from the same specimen material and by a simil the above, but exact method not given; resistivity calc method as above.	Same as the above.	<0.0010 C, 0.015 total metallic impurity and traces Naby the same methods as for Data Set 189); zone-refined 0.3 mm min ⁻¹ in vet E., 5 passes at 1 mm min ⁻¹ in vacuu at 1 mm min ⁻¹ in dry H ₂); other preparations same as the trutty calculated by same method as above.	99.99 pure; 0.0003 Ca and Si each, 0.0002 Al, Cu, and M 0.0001 Ag. Cr, Mn, and Ni each (chemical analysis); mea exploding wire technique; measurement error 4%; smoothe curve; values corrected for thermal expansion.	
Name and Spectmen Designation				Fe IV										
Temp. Range, K	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	1007-2997	
Method Used	۲	<	<	۲	۲	v	×	v	۲	<	<	۲	•	
Year	1968	1968	1968	1968	1968	1968	1968	1968	1968	1968	1968	1968	1977	
Author (s)	Fujii, T. and Morimoto, I.	Fujii, T. and Morimoto, I.	Fujii, T. and Morimoto, I.	Fujii, T. and Morimoto, I.	Fujii, T. and Morimoto, I.	Fujii, T. and Morimoto, I.	Fujii, T. and Morimoto, I.	Fujii, T. and Morimoto, I.	Fuji1, T. and Morimoto, I.	Fujii, T. and Morimoto, I.	Fujii, T. and Morimoto, I.	Fujii, T. and Morimoto, I.	Seydel, U. and Fucke, W.	
	112	112	112	112	112	112	112	112	112	112	112	112	81	
F S E	193*	194*	195*	196*	197*	198	199*	200*	201	202*	203	204	205	

* Not shown on either figure.

 73 Güntler, N., 133 - 123-131 91.99 puts, 0.005 C and N activity ar current and petential connect with Nature N. S. Matter, N., and J. M. 1913 73 Bater, T.K. 1913 74 P. S. Matter, N., and S. M. 1914 75 Bater, T.K. 1917 76 Bater, T.K. 1917 77 Bater, C.F. Matter, 1000 0 and 0.0001 ki Material connection at Nature Natu	3	2 2 2	Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
 206 Bolder, T.K. 1971 A 90-400 207 Erford, C. and Y. and S. 2001 B. Watterfold of Comp. 2002 For an erectival from smoothed values are related from smoothed values are related from smoothed values are related from smoothed values control in the smoothed value are related from smoothed values are related values are value value values are related values are related	<u>ب</u>	92 110	Güntherodt, H.J. Hauser, E., Künzi, H.U., and Wüller, R.	1975 1976	+	1726-1915		99.999 pure from Johnson and Matthey Co.; measured with potential method in which the sample material was enclosed within an alumina tube with four protrusions serving as current and potential contacts.
 B01 Erehov, G.S., 1914 1828–2065 99.97⁺ proce: meanured by a contact method fn a heilua area with appendixed in Arithmetica Matteria (1911 11) I 11 Outkenahteria, M.Y. and 1911 A 4.2-46 I 12 Outkenahteria, M.Y. and 1911 A 4.2-46 I 13 Outkenahteria, M.Y. and 1911 A 4.2-46 I 14 Outkenahteria (1912 M 1912 A 1.2-46) I 14 Outkenahteria (1912 M 1912 A 1.2-46) I 15 Outkenahteria (1912 M 1912 A 1.2-46) I 14 Outkenahteria (1912 M 1912 A 1.2-46) I 15 Outkenahteria (1912 M 1912 A 1.2-46) I 10 Outkenahteria (1912 M 1912 A 1.1-46) I 11 14 Outkenahteria (1912 M 1912 A 1.1-46) I 11 14 14 14 14 14 14 14 14 14 14 14 14	±	206	Holder, T.K.	1977	<	90-400		99.99 pure, 0.0025 C and N each, 0.0007 O and 0.0001 H; Material Research Corp. MARZ grade 3 pass zone refined iron; smoothed values from table; p(273.15K)/p(4K) = 189.
 113 Volkenshtedin, N.V. and 1971 A 4.2-46 Period Prove Manual Structure of Control Methy Society of Link Weight and Parties V. 2011 A 4.5-494 The above meanured in an applied longitudinal aggnetic field of 1.1 k Takina, V.P. 113 Volkenshtein, N.V. and 1971 A 4.5-494 The above meanured in an applied longitudinal aggnetic field of 1.1 k Takina, V.P. 113 Volkenshtein, N.V. and 1971 A 4.5-494 The above meanured in an applied longitudinal aggnetic field of 1.1 k Takina, V.P. 113 Volkenshtein, N.V. and 1971 A 4.5-494 The above meanured in an applied longitudinal aggnetic field of 1.1 k Takina, V.P. 113 Volkenshtein, N.V. and 1971 A 4.5-494 The above meanured in an applied transverse aggnetic field of 1.1 k Construction. 113 Volkenshtein, N.V. and 1973 - 1695-1895 Oc.066 K, 0.006 S, 0.005 Si, -0.005 G, and Cr ach, 0.001 ha and P organish. 114 No. 113 Volkenshtein, N.V. and 1973 - 1695-1895 Oc.066 K, 0.006 Si, -0.005 G, and Cr ach, 0.001 ha and P organish. 114 No. 115 Vika, Y., et al. 119 A - 1675-1895 Oc.066 K, 1960, 1990, 1895, 1813, 1913, 1931, 193	-	207	Ershov, G.S., Kasatkin, A.A., and Gavrilin, I.V.	1974		1828-2065		99.997 ⁺ pure; measured by a contact method in a helium atm with speci- men inside a vertical alundum crucible; liquid metal column 40-50 mm long.
 113 Volkensktedn, W.V. and 1971 A 4.5-494 The above measured in an applied longitudinal magnetic field of 1.1 k Yakina, V.P. 113 Volkenskein, W.V. and 1971 A 4.4-46.1 The above measured in an applied transverse magnetic field of 1.1 k Volkenski, v.P. 113 Volkenski, V.P. and 1971 A 4.4-46.1 The above measured in an applied transverse magnetic field of 1.1 k Volkenski, v.P. 124 Kita, V.P. and 1971 A 4.4-46.1 The above measured in an applied transverse magnetic field of 1.1 k Volkenski, v.P. 137 Kita, Y., et al. 1978 - 1695-1895 0.006 K, 0.006 S, 0.003 St, 0.003 Gu and Cr each, 0.003 hm ad P volkenski, in a vacua Nortica, 2. 93 Kita, Y., et al. 1978 - 167-1919 1.135, 1131, 1695 K; values from tables augmited by authors: values from tables augmited by authors; values from tables from tables, isol, 1930, 1931, 1930, 1931, 1931, 1931, 1931, 1931, 1931, 1931, 1931, 1	_	113	Volkenshtein, N.V. and Yakina, V.P.	161	~	4.2-46	Fe-4	Polycrystalline specimen from Johnson and Matthey Co.; O.1 mm thick, 3.0 mm wide and 15 mm long; vacuum $(10^{-6}$ mmMg) annealed at 1273 K for 1 h, demagnetized; measuring current density 3.3 A mm ⁻² .
 113 Volkemähtein, N.V. and 1971 A 4.4-46.1 The above measured in an applied transverse magnetic field of 1.1 is braina, V.F. 1334, 1393, 1364, 1300, 1303, 1304, 1309, 1305	*	113	Volkenshtein, N.V. and Yakina, V.P.	161	v	4.5-494		The above measured in an applied longitudinal magnetic field of 1.1 kOc.
93 Kita, T., 1978 - 1695-1895 0.008 Ki, 0.003 Si, <0.003 Si, <0.003 Gi and Cr each, 0.000 Mn and P each action an wich the anticur processention in which the action 2.		113	Volkenshtein, N.V. and Yakina, V.P.	1971	~	4.4-46.1		The above measured in an applied transverse magnetic field of 1.1 kDe.
 93 Kita, Y., et al. 1978 - 1676-1919 Same as the above; a second welt; temperature sequence: 1823, 1842 1874, 1893, 1905, 1919, 1900, 1875, 1854, 1803, 1776, 1766, 1741, 1720, 1699 and 1676 K. 93 Kita, Y., et al. 1978 + 1673-1973 Same as the above; a third melt; temperature sequence: 1823, 1843, 1866, 1876, 1869, 1805, 1915, 1996, 1869, 1870, 1841, 18 1825, 1845, 1865, 1875, 1915, 1915, 1966, 1870, 1841, 18 1825, 1845, 1865, 1876, 1809, 1905, 1915, 1996, 1800, 1803, 1913, 18 1825, 1845, 1845, 1845, 1865, 1875, 1915, 1996, 1869, 1870, 1841, 18 1822, 1977, 1764, 1748, 1728, 1906, 1896, 1890, 1841, 18 1822, 1977, 1915, 1996, 1809, 1800, 1841, 18 1822, 1977, 1764, 1748, 1728, 1906, 1804, 1850, 1841, 18 1822, 1777, 1764, 1748, 1728, 1708, 1897, 1864, 1850, 1841, 18 1802, 1777, 1764, 1748, 1728, 1708, 1897, 1864, 1850, 1841, 18 1802, 1777, 1764, 1748, 1728, 1708, 1897, 1894, 1850, 1841, 18 1802, 1114pov, 5.1., and Litaitskii, B.S. 157 Araentiav, P.P., 1970 + 1693-1874 Sectimen produced from electrolytic powder of composition: 0.23 C, Fillipov, S.I., and Litaitskii, B.S. 157 Araentiav, P.P., 1970 + 1693-1874 Sectimen produced from electrolytic powder of composition: 0.23 C, Fillipov, S.I., and Litaitskii, B.S. 157 Araentiav, P.P., 1970 + 1693-1874 Sectimen produced from electrolytic powder of composition: 0.23 C, Fillipov, S.I., and Litaitskii, B.S. 		93	Kita, T., Ohguchi, S., and Morita, Z.	1978	+	1695-1895		0.008 Ni, 0.006 S, 0.005 Si, <0.005 Cu and Cr each, 0.003 Mn and P each, and 0.002 C; measured with a four probe method in which the electrodes are made of the same material as the specimer, in a vacuum of 10 ⁻⁴ Torr; data points are taken at temperatures in the sequence: 1833, 1854, 1864, 1890, 1895, 1872, 1835, 1835, 1316, 1799, 1786, 1759, 1735, 1713, 1695 K; values from table supplied by authore; values corrected for thermal expansion.
 93 Kita, Y., et al. 1978 + 1673-1973 Same as the above; a third melt; temperature sequence: 1823, 1843, 1856, 1876, 1898, 1905, 1917, 1910, 1894, 1879, 1850, 1851, 18 1829, 1845, 1853, 1876, 1878, 1893, 1910, 1894, 1850, 1850, 1841, 18 1829, 1845, 1876, 1876, 1876, 1876, 1876, 1876, 1896, 1870, 1894, 1850, 1850, 1851, 18 1829, 1845, 1865, 1876, 1876, 1876, 1893, 1910, 1894, 1850, 1850, 1851, 18 1829, 1845, 1865, 1876, 1876, 1878, 1910, 1894, 1850, 1850, 1851, 18 1829, 1845, 1865, 1876, 1876, 1878, 1910, 1894, 1850, 1864, 1850, 1841, 18 1829, 1845, 1764, 1764, 1764, 1706, and 1673 K. 157 Arsentiev, P.P., 1970 + 1693-1874 Specimen produced from electrolytic powder of composition: 0.23 C, Fillipov, S.I., and 157 Arsentiev, P.P., 1970 + 1693-1874 0.015 0, 0.012 0, 0.012 6, 0.005 F and 51 each, and trace Mn; melted in hyd gen atm; electrical restrivity reported is the same as that report for a 0.005 C specimen; measured with a potential method with tungs electrodes; experimental chamber evacuated before heating and then filled with pure Pe; measured while heating. 		93	Kita, Y., et al.	1978	t	1676-1919		Same as the above; a second melt; temperature "equence: 1823, 1842, 1857, 1874, 1893, 1905, 1919, 1900, 1875, 1858, 1816, 1817, 1803, 1798, 1776, 1760, 1741, 1720, 1699 and 1676 K.
* 157 Arsentiev, P.P., 1970 + 1693-1874 Specimen produced from electrolytic powder of composition: 0.23 C, Fillipov, S.I., and trace Mn; melted in a hyd gen atm; electrical resistivity reported is the same as that report for a 0.005 C specimen; measured with a potential method with tungs electrodes; experimental chamber evacuated before heating and then filled with pure Pe; measured while heating.		33	Kita, Y., et al.	1978	t	1673-1973		Same as the above; a third melt; temperature sequence: 1823, 1843, 1866, 1876, 1889, 1905, 1915, 1937, 1915, 1896, 1869, 1830, 1831, 1814, 1829, 1845, 1863, 1878, 1893, 1910, 1894, 1879, 1864, 1850, 1841, 1817, 1802, 1777, 1764, 1748, 1728, 1708, and 1673 K.
	*	157	Arsentiev, P.P., Fillipov, S.I., and Liteitskii, B.S.	1970	t	1693-1874		Specimen produced from electrolytic powder of composition: 0.23 C, 0.015 O, 0.012 S, 0.005 P and Si each, and trace Mn; melted in a hydro- gen atm; electrical resistivity reported is the same as that reported for a 0.005 C specimen; measured with a potential method with tungsten electrodes; experimental chamber evacuated before heating and then filled with pure Fe; measured while heating.

	żż	Author (s)	Year	Me thod Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
216*	151	Arsentiev, P.P., Fillipov, S.I., and Litaitakii, B.S.	1970	+	1683-1874		The above; measured while cooling.
217	147	Lauchbury, M.D. and Saundere, N.H.	1976	~	373-1128		<0.03 Mm and <0.01 Cu, Si, Ca, and Mg each; cylindrical specimens 1.5 mm or 2 mm in diam and ~20 mm long, machined from 5 mm diam poly- crystalline rods from Johnson and Matthey Co.; annealed at 1250 K for several hours in an argon atm; random measurement error 11.
218	128	Janos, S., Kovac, L., and Niynek, R.	1972		9.9-28		Only temperature dependent part of resistivity reported; values from graph.
219	115	Isshiki, M. and Igaki, K.	1978	4	1.7~271		High purity, prepared by floating zone refining and heated treated at 1073 K for 24 h in wet hydrogen described by authors in Trans. Jpn. Inst. Metals, <u>18</u> , 413, 1977; specimen then electropolished in 95% acetic acid and 5% perchloric acid from a diam of 500 µm to 150 µm; about 10 cm in length; measured in a longitudinal applied magnetic field of 60 KAm ⁻¹ ; values from graph.
220	113	lsshiki, M. and Igaki, K.	1978	4	1.7~301		Similar to the above except specimen diam reduction from 500 µm to 180 µm.
221	113	leshiki, M. and Igaki, K.	1978	<	1.7-268		Signilar to the above except specimen diam reduction from 500 µm to 190 µm.
222	115	Isshika, M. and Igaki, K.	1978	4	1.6-164		Similar to the above.
223	511	leshiki, M. and Igaki, K.	1978	4	1.6-292		Similar to the above excent specimen diam reduction from 500 µm to 350 µm.
		• `					
}							
* Not	shown	on either figure.					

A CONTRACTOR AND A CONT

100

and the second of the second of the second second second free second second second second

[Temperature, T, K; Electrical Resistivity, p, 10⁻⁴ Am]

G	SET 17 (con	14.	16. 16.	DATA SET 1		1.63 0.	3.14 0.	4.33 0.	6.30 0.	9.02 0.	10.7 0.		DATA SET 19		13 10.	'3 14.	· 3 22.	·3 31.	13 42.	13 54.	'3 69.	3 86.	3 106.	'3 III.	115.	'3 118.		ATA SET 20	1	16.5 5.	3.2 6.	5.3 7.	01.1 10.	19.7 I3.)6.6 16.		DATA SET 21		18.2 10.	11. 2.6	3.2 14.	13.2 18.	3.2 21.	
+	DATA	96	07								80				29	37	47	57	67	11	87	16	107	111	127	137				19	22	24	30	34	64				29	32	37	42	47	
٩	T 16(cont.)	5.31	9.04	14.70	18.06	21.84*	26.10	30.72	35.90	41.51	47.53	54.12	61.22	68.89	77.10	86.22	96.46	105.53	109.58	112.56*	113.09	112.54	113.66	115.49		A SET 17		0.0428	0.97	1.27*	1.95	2.67	3.47	4.31	5.20	6.11	7.04	8.00	8.61	8.99	10.01*	11.09	12.25	4 - -
	DATA SE	194.1	273	373	423	473	523	573	623	673	723	173	823	873	923	973	1023	1073	1123	1173	1183	1193	1223	1273		TAD		4.2	96	100	120	140	160	180	200	220	240	260	273	280	300	320	340	
٩	14(cont.)*	71.0	8/.5 107.2		SET 15		1.037*	5.17	9.04	10.29*	10.35*	11.06	14.74*	18.05*	21.92*	26.14*	30.67*	35.94*	41.07	47.38	53.98*	61.18*	68.33	77.02	85.85	90.25	96.16	96.18*	102.06	105.48*	109.45*	112.35*	112.55*	112.93	112.21*	112.20	112.47	113.92	115.30		SET 16		0.40	
4	DATA SET	873	5/6 5/01		DATA		73	189	273	296	297	310	373	422	473	524	573	625	671	723	774	824	871	924	973	995	1023	1023	1047	1074	1123	1173	1177	1186	1190	1611	1198	1237	1273		DATA		4	
٩	SET 11	0.092	0.100	0.106	0.120	0.269	0.368	0.631	0.744	1.06	10.3		ET 12*		11.7	14.7	17.9	21.6	25.6		<u>ET 13</u>		11.9	14.9	18.2	21.8	25.8	30.3	41.0	53.3	67.9	85.2	104.2		ET 14*		15.8	18.7	22.0	25.9	30.0	34.6	45.0	
÷	DATA	4.2	20.8	26.1	32.5	54.4	61.2	74.2	79.1	90.2	293.0		DATA S		323	373	423	473	523		DATA S		323	373	423	473	523	573	673	517	873	973	1073		DATA S		323	373	^.23	473	523	573	673	
٩	SET 3	0.925	974 8.974	10.33*		*4 T2		11.5	14.5	17.8		SET 5*		0.826	9.61		ET 6*		0.826	10.3		ET 7*		1.63	10.7		SET 8*		0.1437	0.929	9.11		SET 9*		1.060	1.917	9.95		SET 10		0.0681	0.778	8.71	
H	DATA	17.78	273.3	298.8		DATA SI		323	373	423		DATA		8	273		DATA	I	80	273		DATA S		80	273		DATA		21.2	83.2	273.2		DATA		21.2	83.2	273.2		DATA		21.2	83.2	273.2	
	11	1.46*	1.46*	1.46*	1.46*	1.46*	1.46*	1.46*	1.46*	1.46*	1.46	1.46	1.47	1.47	1.44	1.44	1.44	1.47	1.48	1.51	1.51	1.51	1.50	1.51	1.51	1.59	1.61	1.68	1.80	1.84	1.89	1.92	2.02	2.08	2.14		ET 2		1.09	5.78	9.06#	14.73		
٩	S																																				וניט							

103

* Not shown on either figure.

(continued)
Pe
IRON
OF
RESISTIVITY
ELECTRICAL
JHI
₹
DATA
EXPERIMENTAL
.6
TABLE

ì

н	٩	H	đ	T	đ	H	٩	н	ď	T	٩
DATA SET	21(cont.)	DATA SET	22(cont.)	DATA SET	24(cont.)	DATA SI	1 29*	DATA	SET 33	DATA SET 3	5(cont.)*
573.2	30.97	1273	115.8	973.2	87.44*	293.2	9.72	293.2	10.00*	983.4	86.5 200
623.2	36.18	1323	5./11	983.2	89. / 6×			7.676	-70'TT	1.001	00.00
6/3.2	41.82	13/3	0.911	1001	92.0U	IC VIVO	-06 13	2.575	18 164	1.1001	0 10
7.621		(74T)	4.U21	1.001		(EOC	17 0	1.1.1	21 07	1.001	0.00
2.611	24.37	14/3	0.121	2 CTOT	01 174	7.067		2222	26.20	1014.1	97.9
7.C70	66 97#	C7CT	1.021	2 LEUI	98.50#	DATA	SET 31	573.2	30.89	1016.0	63.3
4.5.0	76.06	DATA C	26T 33#	1063 2	00 67			623.2	35.97#	1018.7	93.8
1.026	10.70 Df Df	VIVA	-7 130	1062 1	100 704	6 7	876 0	673 7	A1 55	1010 8	0.40
1.5.1%	C0.C0	Ę	90 1	10001	100.001	1.4.4	0.258	2.0.0	07 64	1020 8	1.16
1003.2	11.12	5	00.1	7.001	101 264		0.250	2.C2/	57 07	0.0201	1
1023.2	50.03	195	1.0	7.6/01	-06.201	7.01	107.0	2.611		0.1201	
1033.2	96.J/	0.67	56.6	1003.2	tu.cut	0.77	C07.U	7.040	20.72 28 61	1 3001	0.04
1036.2	14.66	į		1093.2	101.00	0.42	007.0	7.6/0	10.00	1.0201	4.04 2 20
1043.2	100.84	DATA	SET 24	1103.2	104.23	2.52	0/7.0	2.626	01.07	5-07NT	0.04
1053.2	102.23			1113.2	104.03		0.290	213.2	-14.00	0.1201	4.04
1073.2	104.33*	293.2	9.760*	1123.2	105.40*	36.6	0.300	998.2	90.95	1028.9	
1123.2	108.10*	323.2	10.80	1133.2	105.92	53.1	0.439	1023.2	96.31*	1031.6	96.9
1173.2	110.78	373.2	13.4	1143.2	106.41*	64.4	0.593	1048.2	102.2	1032.8	97.2
1223.2	112.79	393.2	14.85	1153.2	106.85	73.6	0.689	1073.2	105.5*	1034.2	97.6
[273.2	114.49	413.2	16.39	1163.2	107.23*	88.9	1.16	1098.2	197.8	1036.7	98.1
323.2	116.04	423.2	17.20	1173.2	107.55	105	1.81	1123.2	109.6*	1038.1	98.6
		433.2	18.01*	1183.2	107.83*	122	2.24	1173.2	112.3*	1042.9	66.7
DATA	SET 22	443.2	18.83*	1193.2	108.07	122	2.45	1223.2	113.4	1045.9	100.5
		453.2	19.66	1203.2	108.26	151	3.64	1273.2	115.0	1047.7	100.8
273	8.86#	463.2	20.49*	1213.2	108.43*	186	5.10	1323.2	116.6	1050.8	101.2
293	9.81*	473.2	21.31*	1223.2	108.57	221	6.87	1373.2	118.2	1054.7	101.8
323	11.54*	483.2	22.14	1233.2	108.70*	282	10.1	1423.2	119.9	1061.7	102.7
373	14.53*	493.2	22.98*	1243.2	108.83	293.2	10.0*	1473.2	122.1	1079.8	104.6
423	17.85#	513.2	24.69*					1523.2	124.1		
473	21.55*	523.2	25.58*	DATAS	ET 25*	DATI	V SET 32			DATA	SET 30"
523	25.65*	573.2	30, 30#					VIVO	SET 34		
573	30.2*	623.2	35.50	293.2	9.69	0.452	0.339			974.6	85.4
623	35.3	673.2	41.19			0.643	0.346	90	1.30	984.2	88.0
673	40.95#	723.2	47.39*	DATA S	ET 26#	0.752	0.339*	133	2.48	994.3	89.9
723	47.0	773.2	54.04	• •		0.752	0.345	152	3.19	1002.4	91.5
573	53.7	823.2	61.25*	293.2	9.72	0.788	0.350	172	4.06	1001.3	92.6
823	¥6°09	873.2	69.05			0.849	0.350	192	5.15	1012.3	93.6
873	68.7*	883.2	70.68	DATA S	ET 27*	0.860	0.339	211	6.01	1018.9	95.0
923	76.85*	893.2	72.34			0.860	0.349	231	6.95	1022.2	95.7
973	85.9*	903.2	74.03*	293.2	9.71	0.892	0.338	251	7.95	1025.6	96.6
1023	96.0#	913.2	75.74			0.936	0.350	271	8.92	1028.0	97.3
1033	98.5*	923.2	77.50*	DATA S	ET 28*	0.944	0.353	291	10.00	1.1001	98.2
1073	104.9	933.2	79.32			0.952	0.338			1035.1	1.96
1123	108.7*	943.2	81.21	293.2	9.70	1.001	0.333	DATA S	ET 35*	1039.2	100.1
1173	111.6	953.2	83.16*			1.031	0.328			1044.9	101.4
1223	*6.[1]	963.2	85.26			1.102	0.326	917.6	83.5	1059.8	103.4
		; ; ;								1078.8	105.3

* Not shown on either figure.

ч	a	F	σ	F	Q	T	þ	Т	þ	T	ď
DATA S	ET 37*	DATA SET	38(cont.) *	DATA	SET 40	DATA SET	43(cont.)	DATA SET	47(cont.)*	DATA S	ET 49*
1165.5	110.311	1183.6 1184.4	110.589	1103	105.8	253 273	7.9 8.8	16 18	0.390	53.8 76.1	1.820 2.341
1169.1	110.387	1186.2	110.624	1143	108.7	293	9.87	20	0.392		
1171.9	110.437	1187.0	110.638	1163	109.8	323	11.6	25	0.399	DATA S	ET 50
1172.9	110.463	1187.9	110.652	1183	110.7	373	14.7	0 2	0.410	1 75	1 220
1174.6	110.494	1190.6	109 011	1221	112.0	674	21.4	04	0.450	1.01	5.318
1176.2	110.520	4.1011	110.701	1243	112.7	523	26.0	53	0.484	234.0	7.168
1177.3	110.544	1192.5	110.715	1263	113.3	573	30.1	50	0.528	273	9,065*
1178.2	110.567	1194.9	110.741	1283	114.0	623	35.0	55	0.585	273.85	9.115
1179.0	110.589					673	40.3	60	0.654	291.40	10.014
1179.8	110.604	DATA S	ET 39	DATA	SET 41	723	46.8	59 i	0.737	333.40	12.359
1180.8	110.624		-			773	53.3	20	0.832	371.25	14.631
5 L811	040-011	2.67	C	(())	121.111 121 59 4	04.2 87.2	1.00		0.7.0	0.014	00 V 10
1183.5	110.680	173.2	6.3	1593	121.92	923	76.0	22 22	1.188		
1185.3	110.697	223.2	6.6	1613	122.34	973	84.8	6	1.327	DATA SI	ET 51*
1186.1	110.696	273.2	0.6	1633	122.76	1023	94.2	95	1.476		
1187.0	110.696	323.2	11.8	1653	123.17	1073	102.1	100	1.632	51.0	0.660
1188.0	110.689	373.2	14.4	1659	123.31	1123	106.3	110	1.969	54.0	0.725
1188.9	110.689	423.2	17.9	1663	123.49	1173	109.0	120	2.330	76.1	1.220
1192.3	110.687	473.2	21.5	1673	123.74	1223	111.1	130	2.707	273.2	9.065
1193.2	110.698	523.2	25.5	1693	124.22	1273	113.1	140	3.10		
1194.0	110.709	573.2	30.6	1713	124.73			150	3.50	DATAS	ET 52*
1195.0	110.719	623.2	35.8			DATA	SET 44*	160	3.91		
1197.6	110.745	673.2	40.9	DATA	SET 42*			170	4.32	50.5	0.644
		723.2	46.4			291	11.96	180	4.75	50.8	0.649
DATA S	ET 38*	773.2	52.8	83	1.22	373	16.81	190	5.18	76.1	1.220
		823.2	60.2	203	5.60			200	5.61		
1163.9	110.485	873.2	67.2	223	6.50	DATA	SET 45*	220	6.52	DATA	SET 53
1165.5	110.519	923.2	75.6	248	7.65			240	7.44		
1167.4	110.553	973.2	84.2	273	8.96	273	9.64	260	8.42	76	0.608
1168.3	110.578	1023.2	93.8	293	10.0	373	15.09	280	9.43	16	1.067*
1169.2	110.595	1073.2	103.3	313	11.3					173	4.010*
11/1.8	110.603	1123.2	108.1	333	12.5	DATA	SET 46*	DATA S	ET 48*	274	8.659* 0.555
2.1112	047.011	7.0.11	4.011		13.0		:			00.142	
11/2./	110.562	1223.2	112.5			312.07	11.99	76.1	2.341	369.6	11.11
	700.011	7.0121	0.411	NAIA	261 43			191.3	100.0		
11/4.0	110.522	1323.2	115.3	č	•	DATA	SET 47*	229.3	8.364	DATA SE	
11/2.4	104-011	1.1.1.1	0.011	5	7.7			2/3.0	210.01		•
6-0/11	0/6-011	1423.2	11/.9		1.7	0	0.38/	274.55	10.592	505	17.5
11// · · · · · · · · · · · · · · · · · ·	110.491	1473.2	119.2	133	2.4	~	0.387	291.65	11.498	367	20.0
1178.Z	110.514	1523.2	120.6	153	3.1	80	0.385	325.25	13.399	413	23.1
1180.1	110.531	1573.2	121.6	173	4.0	6	0.385	363.7	15.729	460	26.3
1180.9	110.546	1623.2	122.8	193	5.0	10	0.385	412.0	18.902	527	32.0
1151.8	110.566	1673.2	124.0	213	5.9	12	0.387	470.5	23.251	575	36.4
		1715.2	125.2	233	6.9	14	0.389			648	43.6

105

L STATE

* Not shown on either figure.

F	٩	F	٩	4	٩	F	٩	F	٩	H	a
DATA SET	54(cont.)	DATA SET	55(cont.)*	DATA SET	56(cont.)*	DATA SET	58(cont.)#	DATA SET	63(cont.)	DATA SET	66(cont.)
663	45.3*	784	58.1	1042.2	103.89	1182.9	113.16	1580	121.92	573	32.781
735	53.1	567	59.8	1043.2	104.06	1185.7	112.69	1600	122.35	598	35.235
908	61.6	831	65.1	1044.3	104.23	1186.7	112.74	1620	122.76	623	37.877
006	76.4	836	66.3	1044.8	104.32			1640	123.17	648	40.583
933	80.7	885	74.0	1046.8	104.60	DATA	SET 59*	1660	123.56	673	43.345
973	90.2	894	75.2	1047.9	104.78	1					
982	92.1	901	76.7	1049.1	104.97	4.2	2.58	DATA	SET 64	DATA S	ET 67*
1015	98.7	918	79.8	1052.6	105.45						
6101	100.04	156	9.28	1054.9	105.78	DATA	SET 60	1700	125.80	293	9.7
1024	100.74	975	0	1057 6				1720	126.13		
1033		010		1 VEN 1	106 33	202	13 44	1740	136 6.	1111	
5501	102.2	616	C.1%	1.401	100.33	667		04/1	(4.02T	VIV	261 061
1045	105.8*	982	91.8	1059.9	106.32	10/3	80	1/60	170.11		
1062	106.6	987	92.8	1062.2	106.69	1123	112	1780	127.07	66	2.635
1083	110.3*	1000	94.6	1064.7	107.01	1173	114	1800	127.38		
1090	111.3*	1050	106.8	1065.9	107.09	1223	114			DATA	SET 694
1124	112.9	1054	107.5	1068.4	107.39	1279	121	DATA	SET 65		
1124	113.8*	1061	108.1			1378	125			66	1.647
1135	114.5*	1067	108.9	DATA S	ET 57*	1480	124	1700	124.87		
1161	115.1	1076	110.0			1578	135	1720	125.22	DATA	SET 70#
1163	115.8*	1085	110.6	1151.9	113.48	1698	135	1740	125.54		
1174	117.0	1100	111.3	1156.2	113.71			1760	125.83	93	2.25
		1123	113.3	1162.8	114.07	DATA	SET 61*	1780	126.08		
DATA S	ET 55*	1141	114.6	1165.8	114.23			1800	126.30	DATA	SET 71*
		1150	115.0	1173.7	114.63	313	11.65				
8	10.8	1213	115.0	1175.5	114.70	323	12.21	DATA	SET 66	11	0.7786
311	11.5	1229	115.7	1177.5	114.79	333	12.77		1		
347	13.4	1247	116.2	1180.8	114.13	343	13.33	84	2.653	DATA	SET 72*
358	14.1	1291	117.9	1182.9	113.52	•		86	3.091		
373	15.1			1185.2	112.97	DATA	SET 62	123	3.988	11	0.7686
986	16.3	DATA S	SET 56*	1187.7	112.77			148	4.962		
414	19.6			1189.5	112.84	1500	121.12	173	5.979	DATA	SFT 738
451	20.8	1017.6	97.78	1190.6	112.90	1520	121.59	198	6.937		
478	27 0	1018 0	OR UN	1194 6	112 05	1540	122 05	222	6 1 V 7	7.6	0176 0
5	0.55	1010 0	0.8 24	1197 3	112 16	1560	122 51	248	348		
	8.56	1077 8	08 83		01.011	1580	122 05	575	10,601	DATA	CET 744
		1011 4	20.00	14TA 0	277 CQ4	1400	122 20	900	100.01		10 10
3		4.0201 4.021 6	40. V4	NUN	-OC 130	0001	10.01	666	(0).31	•	
	- TC	1010 E	00.00 00 66	0 1311		0701	70.021	C7C	12.204	0.1 1	
		C.C201	00.64	0.1011	113./3	1040	124.2J		770°CT	0. 7	0.13/
	0.55	1028.6	100.42	1101./	114.30	1660	124.60	575	16.630	4.1	0.137
628		1029.5	100.56	1167.9	114.62			398	18.235	5.3	0.138
636	38.8	1031.1	100.99	1171.5	114.82	DATA	SET 63	423	20.012	6.2	0.138
644	0.04	1034.0	101.76	1174.1	114.92			448	21.504	7.3	0.138
675	43.6	1036.0	102.27	1175.7	114.74	1500	120.13	473	23.928	8.5	0.146
687	45.2	1038.7	103.13	1177.8	114.42	1520	120.59	498	26.000	10.1	0.148
725	50.1	1039.5	103.26	1180.4	113.78	1540	121.04	523	28.196	11.8	0.148
752	54.0	1041.0	103.58	1181.7	113.47	1560	121.49	548	30.357	14.0	0.148

106

* Not shown on either figure.

82.3 85.8# 85.8# 92.4# 98.4# 98.4# 98.4# 100.8 100.8 100.8 110.8 1112.2 1113.6 115.7 91(cont.) 122.8 128.8 126.1 116.5 117.2 122.6 129.9* 14.4 16.1 20.3 20.3 26.8 33.6 45.0 65.1 85.0 85.0 140.00 80.7 81.6 82.4 ¢ DATA SET 93 SET 94 **SET 92** SET 95 DATA SET DATA DATA DATA 927 949 964 980 980 1002 1003 1013 1037 1037 1037 1036 1107 11060 11076 11107 11125 1808 1448 1677 1755 1755 1814 1814 2046 2046 928 344 405 457 457 598 598 694 842 944 944 F 86 (cont.) 10.8* 15.5 221.6 221.6 221.6 22.1 6 55.9 8 33.2 8 55.9 8 55.9 4 8 55.1 4 75.0 77.0 10.75 8.93 a 10.87 12.5 DATA SET 87* DATA SET 88* DATA SET 89* DATA SET 90* DATA SET 91 DATA SET 98.0 105.5 111.1 115.2 115.2 124.1 134.3 178.4 199.3 178.4 199.3 251.6 251.6 2531.6 253 22.5 293 H 293 293 293 0.0953 0.0957 0.0957 0.0957 0.0959 0.0959 0.0969 0.09979 0.09979 0.09979 0.09979 0.1015 060.0 0.084 0.057 0.24 9.60 0.57 **SET 86** 4.1 6.9 10.7 DATA SET 84 DATA SET 85* DATA SET 83* 0.8 SET 81* SET 82* đ **SET 80** DATA DATA DATA DATA 4.2 293 4.2 293 4.2 293 4.2 293 5.5 8.8 8.8 8.8 8.8 8.8 111.9 6.6 111.9 6.111.9 113.0 113.0 113.0 4.2 200 EFT % 273 H 79(cont.) 0.88 88.99 98.99 98.99 98.99 9. .65 9.77 10.02 10.12 10.41 9.31 ٩ DATA SET H 111.69 111.97 111.97 111.92 111.92 111.92 111.32 111.43 111.43 111.61 111.61 111.61 111.85 111.85 0.25 0.26 0.82 9.1* 0.63 0.78 0.84 21.4 41.0 68.2 106.4 SET 78* SET 77 194 SET 764 đ SET 4.00 20.2 77.2 273 473 673 673 873 873 VIV DATA DATA 1167.4 1169.5 1173.0 1174.6 1175.9 1178.4 1178.4 1180.6 1184.8 1184.8 1184.8 1184.3 1187.9 1187.9 1189.7 76.7 85.5 91.6 91.6 102.6 112.7 112.7 113.0 1139.0 1139.0 1139.0 1122.2 1139.0 1139.0 1122.2 1122.2 1139.0 1122.2 1123.2 1122.2 1123.2 DATA 77 82.0 84.6 1160 H Not shown on either figure. DATA SET 74(cont.)* 0.155 0.155 0.155 0.156 0.188 0.188 0.188 0.228 0.327 0.503 0.734 111.75* 111.75* 111.86* 111.86* 112.03* 112.29* 112.29* 112.98* 112.98* 112.98* 112.98* 112.98* 112.98* 111.84* 112.02* 111.84* 112.12 107.16 108.03 109.41 11.64 110.62 ٩ DATA SET 75 16.8 20.0 227.5 286.3 56.9 55.9 56.6 0 1088 1123.3 1124.1 1154.5 1156.5 1156.5 1166.6 1156.5 1166.6 1175.3 1176.5 1175.5 1175.5 1175.5 1175.6 1175.5 1175.6 1175.6 1175.6 1175.6 1175.6 1175.6 1175.6 1175.6 1175.6 1175.7 1186.1 1186.1 1196.1 1196.1 1196.1 ۲

(continued)
e.
IRON
0F
RESISTIVITY
ELECTRICAL
THE
NO
DATA
EXPERIMENTAL
TABLE 9.

-	٩	F	Q	H	٩	ų	٩	н	٩	Ŧ	٩
DATA SET	95(cont.)	DATA SET	96(cont.)*	DATA	SET 98*	DA. A SET	99(cont.)*	DATA SET	.01(cont.)*	DATA SET 1	.03(cont.)*
942	83.2	1040	103.8	1174.7	117.711	1175.6	117.682	483.5	27.68	959.5	81.30
647	84.1	1046	104.8	1175.6	117.735	1176.5	117.663	486	27.88	1009	00.68
952	85.0 ex e	1155	116 8	2.0/11	11/.//I	1178 3	117 632	C.12C	41.30	1169	110 60
	86. N	158	115.0	1178.3	117.843	1179.2	117.651	803.5	61.55	C-06TT	00.011
3 <u>6</u> 2	87.6	1164	115.2	1179.2	117.869	1180.0	117.655	808.5	61.55	DATA SI	ET 104*
970	88.6	1168	114.8	1180.0	117.920	1181.0	117.655	916	77.40		
975	89.5	1172	114.9	1181.0	117.963	1181.9	117.665	647	83.40	273	10.50
086	90.3	1176	115.0	1181.9	118.002	1182.8	117.690	1025	96.70	284.1	11.10
984	91.4	1181	115.1	1182.8	118.036	1183.6	117.713	1036	99.70	325	13.21
686	92.3	1186	115.1	1183.6	118.061	1184.5	117.741			374	11.41
666	93.2	1190	115.2	1184.5	118.077	1185.5	117.773	DATA S	ET 102*	401.5	18.44
866	94.3	1194	115.3	1185.5	118.098	1186.4	117.800			463.5	23.28
1008	96.2	1198	115.5	1186.4	118.112			273	12.500	525.5	28.66
1012	97.2	1203	115.6	1187.2	118.105	DATA S	ET 100*	289	13.58	587.5	34.92
1016	98.3	1207	115.8	1188.2	118.082			291	13.82	631.5	39.80
1026	100.5	1211	115.9	1189.0	118.070	325	12.43	444.5	23.48	686.5	45.90
1031	101.6	1217	116.1	1189.6	118.056	375	14.88	474.5	25.13	739.5	52.70
1036	102.7	1221	116.2	1190.7	118.045	425	18.33	594	36.28	790	59.25
1050	105.8			1191.5	118.047	475	22.78	600	36.76	828	64.40
1054	106.4	DATA	SET 97*	1192.4	118.052	525	26.23	603.5	37.00	834	65.40
1059	106.9			1193.2	118.092	575	30.68	777.5	55.50	878.5	71.95
1063	107.6	1003	95.4	1194.0	118.108	625	36.13	179	55.70	922	78.90
1068	108.1	1021	9.6	1194.8	118.125	675	41.58	893	71.35	952	83.75
1073	108.6	1040	104.4	1195.5	118.142	725	48.03	926	75.60	987.5	89.30
1077	109.0	1045	105.4	1196.4	118.158	115	54.48	979	84.40	1012.5	94.20
1082	109.5	1001	110.5	1197.0	118.198	825	61.93	997.5	86.60	1024.0	96.20
1085	110.0	1155	114.2	1197.7	118.230	875	69.38	1034	92.60	1037.0	98.60
1095	110.6	1159	114.4	1198.5	118.258	925	77.83	1059	97.20	1095	100.00
1100	111.0	1164	114.7			975	86.28	1078	101.10	1059.5	103.00
1011	111.3	1167	115.4	DATA	SET 99*	1025	94.73	1081.5	101.10	1073	106.10
1109	111.6	7/17	115.4			1075	102.18	1154	110.00	1099	108.30
1114	111.8	//11	115.6	1163	117.263	1125	107.63	1143	109.40		
0111	112 5	1011	1.011	6 7711	117 201	2/11	90.111	1273 5	07.611	DAIA S	CO1 13
(711	C . 711	1100	0.011	0.4011	100/111	2771	CC.CI1	C.C221	114.20		10 60
1111	1.511	1195	0.011	1.0011	674.111 874.111	5/21	116 67	5 0001	00.011	106	0C-0T
1127		1108	0 911	1167 5	117 540	1175	117 88	1222	115 80	135	15.20
1711	111.5	1203	116.2	1168.5	009 211	1675	120.33	1111	00.011	114	10 01
1146	113.9	1207	116.4	1169.4	117.661			DATA S	ET 103*	469.5	24.02
1150	114.2	1211	116.4	1170.1	117.704	DATA S	ET 101*			525.5	29.00
		1216	116.7	1171.1	117.721			289.8	13.510	568.5	34.02
DATA S	5ET 96*	1220	116.8	1172.0	117.718	273	13.600	293	13.94	634	40.58
	Ì,			1173.0	117.712	291	14.61	903	72.90	629	43.40
1004	94.9			1173.9	117.689	400	22.15	905.5	72.40	619	45.72
1022	99.1			1174.7	117.690	462	26.30	954	79.75	727.5	51.77
* Not sh	own on either	figure.									

DATA SET 113(cont.) 114.8* 115.8 115.8 117.2* 117.2* 117.2* 117.2* 117.2* 117.2* 117.2* 117.2* 117.2* 117.2* 117.2* 117.2* 117.2* 112.2* 122.2* 122.2* 122.2* 122.3* 122.3* 122.3* 122.3* 123.5* 123. ٩ 114 SET DATA 1417 1445 14497 14497 14497 1544 15544 15544 1556 16568 16568 16686 16686 1697 1718 1397 ۲ 112.6 113.5***** 114.3***** 113(cont. DATA SET м 9.35 10.95 11.92* 15.49 15.49 31.93 37.07 56.79 56.30 56.30 79.40 79.40 71.05 79.40 79.40 71.05 111.0 105.1 DATA SET 110(cont.) 79.55 89.70 103.3 113.2 118.6 118.6 120.4 121.2 122.0 10.0 11.5 13.1 14.1 15.7 17.2***** 19.0 ٩ SET 111 SET 113 138 112 SET DATA DATA DATA 1923 304 327 327 327 327 53 55 51 51 ٠ 9.57 112.06 115.39 19.09 23.67 23.67 28.72 34.15 44.09 54.88 62.35 70.30 11.64 15.53 22.00 22.00 25.00 25.00 55.50 55.50 67.55 55.50 67.55 55.50 67.55 59.55 67.55 100.8 85.20 85.20 810.8 8.53 19.91 108 (cont. 91.6 97.5 97.5 100.2 101.5 103.6 106.0 111.1 112.8 113.6 SET 109* SET 110 a DATA DATA SET DATA 1044 1053 1053 1073 1073 1123 273 2293 373 373 373 473 473 573 673 673 673 773 773 8823 873 873 273 323 373 473 473 673 673 673 7723 823 823 823 973 1023 1073 1073 1173 1173 1223 1223 23 H 107 (cont.) 2.07 5.81 15.5 15.5 15.5 30.6 41.6 53.9 53.9 53.9 53.9 53.9 53.9 53.9 ٩ 108 SET SET DATA DATA F 78 178 273 273 370 570 681 783 864 864 982 033 0.080 57.85 64.85 76.05 77.00 77.00 89.20 89.20 89.20 99.65 99.65 99.65 100.90 100.90 100.90 100.90 100.90 100.90 100.90 100.50 111.40 11.40 11.40 11.40 11.40 11.40 11.40 11.40 11.40 11.40 11.40 11.40 11. DATA SET 105(cont 0.23 SET 106 DATA SET 107 a DATA 776.5 826.5 826.5 931.5 931.5 931.5 931.5 931.5 930.5 931.5 932.5 1034.5 1114.5 4.2 ~ • •

* Not shown on either figure.

H	٩	F	م	Т	٩	÷	p - p	H	d	T	٩
DATA SE	<u>1115</u>	DATA SET	116(cont.)	DATA SET	<u>116(cont.)</u>	DATA	SET 119*	DATA S	ET 124*	DATA SET	34 (cont.)
6/11	129.9	1023.4	98.589*	1054.4	106.326*	2.438	0.00009942	11	0.700	25.4	0.3583
1797	131.0	1024.7	98.981* Go Ange	1056 3	106.433*	3.062	0.0001421	867	9.60	20.2	0.3553#
1832	140.0	1027.1	100.015*	1057.4	106.611*	5.000	0.0003850	DATA	SET 125*	30.9	0.37608
1842	138.4	1027.2	99.694*	1059.0	106.825*	7.674	0.0007771			33.6	0.3802
1847	139.2	1028.5	100.122*	1059.6	106.896*	10.00	0.001326	4.2	0.236	37.2	0.4146
1852	141.3	1029.6	100.443*	1060.5	106.896	11.32	0.001720			40.7	0.4484
1862	139.3	1030.4	100.764*	1061.2	106.932*	15.92	0.004041	NTA	SET 126*	40.8 51 5	0.497/
18/2	140.8	1031.0	100.9/8#	1.2001	107 003#	18.84 20 31	0.020088	4 2	151.0	0.05	1200.0
1892	142.1	1032.6	100.512*	1064.0	107.039*	38,90	0.04770			64.6	0.7590
1898	141.1	1033.4	101.833*	1065.2	107.075*	49.77	0.1184	DATA	SET 127*	70.6	0.8995
i		1034.0	102.012#	1066.0	107.146*	62.66	0.2776			71.9	U.93/4=
DATA	SET 110	1035.0	102.368*	1068.0	107.324*	DATA	SET 120*		ccc.n	7.61	1.120
8.666	91.101	1035.7	102.618*	1069.1	107.396*			DATA	SET 128*	82.2	1.218
995.4	91.422*	1036.0	102.760*	1069.9	107.431*	2.366	0.0001022			86.3	1.359*
996.4	91.636*	1036.7	102.974*	1070.3	107.503*	2.951	0.0001554	4.2	0.726	90.6	1.509*
996.7	91.707#	1037.4	103.295*	1071.4	107.574*	4.130	0.0002732			95.1	1.690
997.7	91.885*	1038.2	103.519*	1072.3	107.610*	4.989	0.0004004	DATA	SET 129*	102.1	1.920*
998.2	91.921#	1038.8	103.68/*	1073.0	107.645*	7.379	0.0008138			6.801	2.173*
998.8	92.171# 07 817	1039.2	103.830#	10/3.6	107.7524	11.02	0.001/00	4.2	0.36/	C./11	7 0154 2 0154
1001	92.014 97 167#	1040.0	187	1076.0	107.824#	10.61	0.01001	DATA	SET 130*	137.4	7.76
1003.5	93.419*	1040.3	104.294*	1077.0	107.895*	39.45	0.04041		AC* 130	150.0	3.85
1004.4	93.561*	1040.8	104.508*	1077.9	107.930*	47.64	0.07789	4.2	0.641	166.3	4.66*
1005.5	92.527*	1041.3	104.650*	1078.7	108.037*	77.62	0.5514			175.4	5.067
1005.7	93.704	1041.9	114.828*	1079.7	108.144*			DATA	SET 131*	181.6	5.548*
1006.2	93.918*	1042.4	104.864*	1080.4	108.251			•		195.9	6.321
1007.1	94.239* 96.417*	1042.8	105.007*	1081.4	108.323*	н	٩	4.2	0.924	218.3	7.336
1008.8	94.666*	1043.7	105.114*	1083.2	108.430*			DATA	SET 132*	252.3	9.253
1010.4	94.916*	1044.3	105.185*	1084.3	108.501*	DATA SET	121*			259.4	9.482
1011.4	95,130*	1045.2	105.399*	1085.5	108.572*	1573	111 8	4.2	1.086	276.1	10.136
1012.2	95.415*	1045.7	105.542*	1086.5	108.608*	1873	136.4			300.0	10.33
1015.0	90.000 M	1046.0	105.615F	T022.1	106.71			VIVO	SET 133*	DATA CE	. 136
1015.7	96.271*	1047.3	105.791*	DATA SET	117	DATA SE	T 122*	4.2	1.298	TO VIVO	CT
1016.5	96.521*	1048.2	105.862*			;	600			373	16.1
1017.1	96.628*	1049.2	105.969*	1873	110	64C	0.00	DATA	SET 134	473	22.8
1017.8	96.877*	1049.8	106.005*			710	00.0			573	30.8
1019.3	97.412*	1050.4	106.041	DATA SET	r 118	DATA SE	T 123*	4.2	0.3300	673	42.6
20201 201	97.697	0.1201	106.112#					16.3	0.3417		4.00
1.1201 1.1701	9/.911× GR 768#	1057 0	106 1834	609T	134	11	0.620	1.01	2455 U		
1022.4	98. 339*	1053.7	106.290*			298	9.80	22.3	0.3522		

* Not shown on either figure.

EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF IRON Fe (continued)

TABLE 9.

ດ້

TABLE

DATA SET 158(cont.)* 97.684 97.843 98.003 98.003 98.625 99.531 99.531 99.531 99.531 99.531 100.77 101.56 100.77 101.58 100.77 101.58 105.39 105.32 105.32 105.32 105.32 105.32 105.32 105.32 8.57 9.61 14.296 21.5 30.3 53.4 53.4 45,434 60.230 61.241 880.392 880.392 92.762 94.828 94.828 94.828 95.539 95.539 95.539 95.233 95.233 97.086 97.086 97.3457 97.3457 97.3457 97.3457 97. 159 ¢ SET 719.5 8370.6 8370.6 837.8 955.9 955.9 955.9 955.9 1012.25 1012.25 1023.4 1023.4 1033.4 1033.4 1033.5 1033.5 1033.5 1045.5 1045.5 1045.5 1045.5 1045.5 1045.5 1045.5 1045.5 1055.6 1005.6 10055.6 1005.6 1005.6 1005.6 1005. DATA ٣ 0.006210 0.006211 0.006212 0.006215 0.006217 0.006221 0.006225 0.006225 0.6696 0.6696 0.6712 0.6967 1.982 2.391 2.391 15.98 0.8806 0.8806 0.8806 0.9348 2.755 22.58 DATA SET 153(cont.) 1.288 1.520 11.04 SET 156* SET 155* 0.180 1.046 8.572 8.572 14.442 29.129 30.269 SET 154# 8.73 156A 1574 ٩ SET SET DATA DATA DATA 1.38 3.71 4.21 20.40 81.73 90.46 273.16 0.302 0.400 0.500 0.500 0.600 0.700 0.805 0.908 1.004 77.79 85.19 273.16 1.38 3.71 4.21 20.40 81.73 273.16 DATA DATA н 273 0.1631 0.1641 0.1674 0.1772 0.8935 10.87 0.0556 0.0565 0.0692 0.6751 9.11 0.0723 0.0723 0.0795 0.6751 8.93 0.1604 0.1614 0.1781 0.8610 9.84 0.6166 0.6166 0.6176 0.6425 1.421 1.66 9.59 0.5123 0.5167 0.5235 SET 150* SET 151* SET 152* SET 153* SET 148 SET 149 ۹ DATA DATA DATA DATA DATA DATA 1.98 4.21 20.40 78.20 273.16 1.98 4.21 20.40 78.24 273.16 1.38 4.21 20.40 77.74 273.16 1.38 3.71 4.21 20.40 77.74 273.16 1.38 3.71 4.21 20.40 81.73 90.46 90.46 1.29 4.21 20.40 H 0.962 4.9928 8.57 14.296 14.296 30.215 8.57 9.6100 14.296 14.296 14.296 14.296 21.432 31.015 36.259 51.759 0.0896 0.0887 0.0974 0.828 0.828 8.70 0.2020 0.2022 0.2136 0.8602 1.094 9.36 0.1252 0.1252 0.1252 0.1341 0.8898 8.88 DATA SET 143(cont.) SET 145* 146* 147 SET 144* σ SET SET DATA **VII** DATA 1.38 4.21 20.40 83.90 273.16 DATA 1.38 4.21 20.40 78.85 87.42 87.42 1.38 3.71 4.21 20.40 83.90 83.90 80.3 194.9 273.0 373 373 373 273.0 293.0 373.0 373.0 373.0 373.0 472.6 580.8 580.8 H --0.64286 0.97180 5.1337 8.57 -0.64286 0.97180 5.1537 8.57 0.963 0.969 4.980 8.57 9.6100 14.296 14.296 14.296 14.296 14.296 54.954 54.958 0.9836 4.9928 4.9969 SET 140⁴ DATA SET 141* 1434 1424 DATA SET 138(cont. 120.5 121.1 121.1 122.5 122.5 122.5 125.0 125.0 125.0 125.1 125.1 125.1 125.1 a SET SET DATA DATA DATA 20.4 80.6 198.3 273.1 20.4 80.6 198.3 273.1 81.0 194.9 195.0 1511 1532 1532 1572 1572 1673 1673 1773 1773 H 142.7 152.3 164.9 **DATA SET 136** ٩ 137# 138 Ę SET VIN VIN 1811 279 635 565 7668 7668 985 9856 9800 1107 11173 11173 11173 11174 1 ţ.

Not shown on either figure.

F	٩	F	٩	Ļ	d	т	d	T	٩	÷	a
DATA SET 1	[59(cont.)#	DATA SI	ET 161*	DATA SET	162(cont.)*	DAT	A SET 166	DATA SE	rt 178*	DATA	SET 181*
973 1073	85.2 105	193.8 292.8	5.06 9.6	4.17 4.19	0.03370 0.03370	4.2	0.0599	879 879	70.79 73.82	0.310 0.338	0.005887 0.005890
6/11	127	398.0	15.9	4.19	0.03371	DAT	1 SET 167	903	74.84	0.423	0.005894
12/3	261	491.8 586.6	23.U 31.6	DATA	SET 163	4.2	0.0381	928 928	72.97	0.601	0.005900
DATA	SET 160*	684.6	42.2					951	81.51	0.699	0.005905
		784.6	55.0	1.26	*660.0	DATA	SET 168*	951	83.13	0.807	0.005911
84.9	0.735	887.8	70.5	1.46	0.03400			976	87.58	0.909	0.005915
88.7	0.766	988.9	88.1	1.64	0.03401	4.2	0.0368	979	86.57	10.1	0.005922
87.4	0.784	1085.8	107.5	1.84	0.03403		4031 22	1000	91.02	1.10	0.005928
0.44 0.46	0.010	1.1021	F100.4	10.7	0.03405		JEI 107-	1022	19.26	1.20	0066000.0
98.1	0.978	DATA	SET 162*	2.44	0.03406	4.2	0.0390	1022	97.39	DATA	SET 182*
103.2	1.09			2.85	0.03408			1045	101.13		
108.7	1.19	1.16	0.03368	3.05	0.03411	DAT	SET 170	1050	102.65	1.02	0.005216
114.0	1.26	1.23	0.03368	3.25	0.03412			1072	103.25	1.17	0.005230
119.1	1.33	1.27	0.03368	3.47	0.03414	4.2	0.0317	1071	104.87	1.29	0.005239
123.7	1.42	1.29	0.03368	3.67	0.03417			1094	105.68	1.38	0.005250
129.1	1.53	1.34	0.03368	3.84	0.03417	DATA	SET 171*	1100	106.19	1.49	0.005259
1.12.9	1./3	45 · T	0.03368	10.4	0.03421		0.00 0	9711	10/.30	1. 29	0.005272
	1.80	1.1	0.03368	07.4	0.03423	4.2	0.4810		TOL: 440	1.08	0.005285
14/./	1.71	1.28	0.03368	14.01	0.03/UZ	747	CET 173#	NIN	JET 1/3-	90°	167500.0
1.541	5.22 5.83 C	1.67	000000	14.90	0.03715	VIVA	7/7 190	0 78	0 005688	1.09	016500.0
1.67.4	2.03	1.77	0.03368	15.27	12750-0	6 4	0.2637	0.410	0.005694	88	0.005342
173.0	3.04	1.89	0.03368	15.94	0.03805	•		0.49	0,005699	2.20	0.005363
178.4	3.33	2.00	0.03368	16.40	0.03431	DATA	SET 173*	0.59	0.005709	2.29	0.005376
183.3	3.54	2.09	0.03369	16.87	0.03857			0.69	0.005716	2.40	0.005396
186.0	3.78	2.13	0.03369	17.31	0.03882	4.2	0.2261	0.80	6č25vû°0	2.50	0.005411
198.0	4.30	2.16	0.03369	17.89	0.03925			0.90	0.025742	2.60	0.005430
206.3	4.69	2.35	0.03369	18.39	0.03959	DATA	SET 174*	1.01	0.005761	2.70	0.005450
214.3	5.12	2.46	0.03369	18.95	0.03994			1.10	0.005773	2.79	0.005465
0.712	C#.C	07.7	90550 0	19.40	0.04026	4.2	0.2115	1.20	\$6/CON.0	06.2	0.005503
2.122		2.00	09150 0	70.02	0.040.0	ATAC	CET 1754	DATA	CET 1804	0.0	
240.2	6.40	1.2	011160	DATA	SET 164		TTTT		001 TOC	00. 6	
244.3	6.75	2.98	0.03369			4.2	0.0371	0.38	0.005876	2.10	0.005564
252.8	7.08	3.01	0.03369	0.38	0.03395	1	2 	0.42	0.005879	3.40	0.005585
259.1	7.51	3.09	0.03369	0.49	0.03396	DATA	SET 176*	0.49	0.005881	3.51	0.005606
266.4	7.80	3.19	0.03370	0.95	0.03398			0.70	0.005888	3.60	0.005629
270.5	8.39	3.28	0.03369	1.08	0.03399	4.2	9.0136	0.80	0.005891	3.70	0.005650
274.7	8.83	3.43	0.03370	1.27	0.03400			0.90	0.005898	3.79	0.005673
279.4	. 9.16	3.57	0.03370			DATA	SET 177	10.1	0.005905	3.89	0.005699
287.2	9.33	3.78	0.03370	DATA	SET 165*			1.10	0.005910	4.11	0.005745
C.142	0 4 0	5.8/	0/550 0	c 7	0 JJEE	4.2	0.0354	1.20	0.005917		
7.167	7.00	14.0	01050.0	7.4	CC22.U						

* Not shown on either figure.

and the second second

And the second se

112

Fe (continued)

EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF IRON

TABLE 9.

والمحافظة والمتعاد والمناخل والمستحد والمستحفظ فالمتنا ويتجاور والمعالية والمعادية

Т	ρ	T	σ	F	Q	Т	β	T	σ	T	d
DATA	SET 183*	DATA SET	184(cont.)*	DATA	SET 196*	DATA SET	205(cont.)	DATA SET	201 (cont.)	DATA SET	209(cont.)
1.41	0.012080 0.012093	17.6 19.05	0.02097 0.02248	4.2	0.0615	1677 1736	123.5* 124.3*	360 380	13.446 14.699	40.1 1.04	0.0941
1.61	0.012093	20.7	0.02454	DATA	SET 197	1816	125.3	400	16.009	42.3	0.1047
1.72	0.012099					1816	131.3			43.0	0.1083
1.82	0.012098	DATA	SET 185*	4.2	0.0516	2001	133.2	DATA SI	<u>st 208</u>	43.7	0.1134
2.05	0.012124	4.7	0.0566	DATA	SET 1984	2175	136.6	1878	137.5	44.9 45 7	0.1216
2.22	0.012148	•	2000		0/1 170	2505	137.8	1854	138.4		0.110
2.32	0.012165	DATA	SET 186	4.2	0.0429	2699	139.4	1877	138.4	DATA	ET 210*
2.50	0.012183	4.2	0.0246	DATA	SET 199*	2964	141.5*	1915	139.7	4.5	0.027
2.52	0.012193					2997	142.0	1953	141.9	5.8	0.027
2.63	0.012215	DATA	SET 187*	4.2	0.0384			1980	142.6	6.7	0.027
8/ · 7	0.012238 0.012238	6 4	0 070 0	DATA A	00C 133	DATA S	ET 206	20102	143.2 4 143.24	0.0	0.028
3.09	0.012296	4	2040.0	NALA	201 200	1726	126.7	2065	144.5*	6.0 9.6	0.028
3.26	0.012329	DATA	SET 188*	4.2	0.0358	1748	126.7		- - -	10.5	0.028
3.41	0.012364					1772	127.6	DATA	SET 209	11.4	0.029
3.62	0.012405	4.2	0.0491	DATA	SET 201*	1775	127.6			12.3	0.029
00.0	0.012438	ATA S	36T 1804	c 7	0 0336	19/1	128.5	0.0	0.0410	14.3	0.030
4.31	0.012571	VIUA	101 170	4 7	00000	1822	135.2*	7.2	0.0420	19.7	0.035
		4.2	0.283	DATA	SET 202*	1832	135.1*	8.2	0.0423	20.9	0.036
DATA	SET 184*					1838	135.5	9.1	0.0423	21.6	0.037
		DATA	SET 190*	4.2	0.0296	1852	135.9	10.0	0.0429	22.9	0.038
4.7	0.01271					1873	136.1	10.8	0.0425	24.3	0.039
0°0	0.01283	4.2	0.134	DATA	V SET 203	1884	136.9	11.6	0.0429	26.0	0.042
	0.01304	DATA (5PT 101#	6 7	0 0357	1061	136.3*	12.6	0.0433	21.2	0.044
6.1	0.01315		1/1 100	4	1070-0	CT CT	A. 107	17.1	0.0458	29-9	0.048
6.2	0.01329	4.2	0.109	DATA	V SET 204	DATA	SET 207	20.7	0.0482	31.2	0.051
9.0	0.01329	i				;		21.8	0.0499	31.9	0.053
	0.0177	NIN	261 132	4.2	0.0248	0.6	1.210	23.1	0.000	0.66	0.020
8.1	0.01395	4.2	0.0926	DATA S	ET 205	120	1.907	26.2	0.0544	35.3	0.063
8.6	0.01421					140	2.654	27.5	0.0561	36.7	0.068
9.2	0.01448	DATA	SET 193*	1007	94.3*	160	3.452	28.6	0.0579	37.8	0.073
9.6	0.01479	•		1044	102.8*	180	4.299	30.0	0.0603	39.0	0.079
r.91	41CIU.U	4.2	0.0884	1098	107.6*	200	5.172	31.2	0.0632	40.3	0.085
11 95	0.01622	14TA	10/÷	7011	49.7TT	070	0/6.0).16 1.55	0.001.0	9.14 0.14	0.006
12.81	0.01678		L(T 170	1295	116.4*	260	7,964	1.00	0.0708	6.54	0.099
13.96	0.01765	4.2	0.0799	1421	*1.9.1	280	8.966	35.4	0.0746	44.0	0.105
15.0	0.01850			1501	120.4*	300	10.002	36.7	0.0788	44.9	0.114
15.6	0.01892	DATA	SET 195*	1627	122.5*	320	11.102	7.76	0.0834	47.8	0.135
16.4	0.01973	4.2	0.0635	1677	123.0*	340	12.255	39.3	0.0893	49.4	0.146

* Not shown on either figure.

113

(cont1nued)
Fe
IRON
OF
RESISTIVITY
ELECTRICAL
THE
NO
DATA
EXPERIMENTAL
÷.
TABLE

۹ ۲	F		L	d	F	d	÷	م	H	e
DATA SET 211*	DATA SET	213(cont.)*	DATA SET 2	14(cont.)*	DATA SET	217(cont.)	DATA SET	217(cont.)	DATA SET	217(cont.)
4.4 0.057	1803	135.9	1915	137.6	453.2	20.18*	923.2	77.04*	1046.95	102.33*
6.6 0.057		136.1	1915	13/./	473.2	21.82*	933.2 043 2	18.7/# 90 5/#	1048.2	102.58*
	1816	2.001	1661	CD - 06T	2.692	23.58#	948.2	81.44*	1050.7	103.00
0.059	1842	136.45	DATA SE	T 215*	503.2	24.51*	953.2	82.40	1053.2	103.40*
12.4 0.058	1857	136,65			513.2	25.46*	958.2	83.30*	1055.7	103.77*
4.4 0.059	1858	136.75	1693	125.8	523.2	26.41*	963.2	84.21*	1058.2	104.13*
6.3 0.059	1874	136.9	1773	127.1	533.2	27.38*	968.2	85.12*	1063.2	104.98
18.7 0.060	1875	137.0	1813	132.1	543.2	28.33*	973.2	85.92*	1068.2	105.63*
13.2 0.064	1893	137.2	1832	133.7	553.2	29.29	978.2	86.87*	1073.2	106.37*
190 . 0067	1900	137.35	1874	137.6	563.2	30.22*	983.2	87.85*	1078.2	106.89
9.9 0.071	1905	137.4			573.2	31.18*	988.2	88.84	1083.2	107.38*
13.6 0.076	1919	137.6	DATA S	ET 216*	583.2	32.16*	993.2	89.56*	1088.2	107.85
15.7 0.064					593.2	33.16*	995.2	×10.07×	1093.2	108.31*
18.2 0.090	DATA	SET 214*	1683	121.167	603.2	34.18*	998.2	90.60*	1098.2	108.73*
0.5 0.100	:		1692	122.332	613.2	35.22*	1000.2	91.12*	1103.2	109.14
2.8 0.112	1673	127.05	1703	121.577	623.2	36.28*	1003.2	91.64*	1108.2	109.53*
6.1 0.130	1708	127.65	1/13	122.358	633.2	37.37*	1002.7	AZ.1/*	1113.2	109.93 *
	1728	127.95	1723	121.986	643.2	38.46*	1008.2	92.72	1118.2	110.29*
MTA SET 212	1748	128.2	1732	121.998	653.2	39.56	1010.7	93.27*	1123.2	110.63*
	1764	128.55	1743	123.935	663.2	40.67*	1013.2	93.834	1128.2	110.96
5 126.4	1111	133.45	1752	124.332	673.2	41.80*	1015.7	94.38*		
3 126.65	1802	136.2	1762	123.960	683.2	42.96*	1018.2	94.95*		
5 127.0	1814	136.2	1783	126.678	693.2	44.14*	1020.7	95.52*	Ŀ	00-
9 127.35	1817	136.4	1793	126.306	703.2	45.35*	1023.2	96.11*	•	Pr La
6 129.9	1822	136.15	1808	126.709	713.2	46.62*	1025.7	96.70*		
9 134.1	1829	136.4	1808	134.402	723.2	47.86*	1028.2	97.31*	DATA S	ET 218*
6 135.65	1833	136.45	1812	134.792	733.2	49.11*	1030.7	97.93		017 17
3 135.85	1841	136.75	1823	135.960	743.2	50.38*	1033.2	98.57*	10 0	0 68
5 135.9*	1843	136.45	1833	134.819	753.2	51.63	1034.45	98.90 *	10.49	0.0
4 136.2	1845	136.65	1843	131.369	763.2	52.93*	1035.7	99.24	11 11	1 13
5 136.2*	1850	136.7	1649	138.685	773.2	54.26*	1036.95	99.58*	11.80	117
4 136.35	1850	136.95	1853	131.382	783.2	55.61*	1038.2	99.92 *	12 75	1 38
2 136.5*	1863	136.95	1853	139.075	793.2	57.00*	1039.45	100.28	11 20	1.50
0 136.55	1864	137.1	1858	138.697	803.2	58.39*	1039.7	100.33*	07.01	
5 136.8	1866	136.8	1864	133.704	813.2	59.83*	1040.2	100.47*	00.61	1.04
	1869	137.05	1864	139.088	823.2	61.27*	1040.7	100.62*	14.00	74.7
TA SET 213*	1876	137.0	1864	138.326	833.2	62.70*	1041.2	100.79*	26.01	16.2
	1878	137.2	1874	39.486	843.2	64.17*	1041.7	100.95*	10.32	91.5 5
6 126.9	1879	137.35			853.2	65.67	1043.2	101.39*	11.11	2/.0
99 127.25	1889	137.2	DATA	JeT 217	863.2	67.20*	1043.7	101.56	11.99	5
0 127.55	1893	137.45			873.2	68.76*	1044.2	101.70*	10.04	4.00
41 127.9	1894	137.55	373.2	14.62*	883.2	70.35*	1044.7	101.83*	10.00	4.97
50 128.15	1896	137.35	393.2	15.88	891.2	+66.12	1045.2	101.95*	19.88	62.0
129 4	1905	57 211	6 117	17 234	- EU0	79 66	1045 7	102 00#	20.47	5.69
115 5	1010	26 161		10 66	2.000	15 32	6 9701	10. 21+	21.10	6.14
					1.1.1			141.44		

Not shown on either figure.

ł

<u>\ SET 218(cont.)*</u> 21.78 6.64 22.46 7.12 22.91 7.44 22.45 8.07 23.45 8.74 23.45 8.74 24.40 9.06		٥	F	٩	H	٩	ч	٩	
11.78 6.64 22.46 7.12 22.91 7.44 23.23 7.80 23.45 8.07 23.45 8.07 23.40 9.06 24.90 9.64	DATA SET	219(cont.)*	DATA S	ET 221*	DATA SET	222(cont.)*	DATA SET	223(cont.)*	
22.46 7.12 22.91 7.44 23.23 7.80 23.45 8.07 23.45 8.07 24.40 9.06	48.7	15.0×10 ⁻²	1.72	0.233 × 10 ⁻²	2.20	0.158×10 ⁻²	5.41	0.122×10^{-2}	
22.91 7.44 23.23 7.80 23.45 8.07 23.40 9.06 24.90 9.64	52.8	19.2	1.85	0.235	2.40	0.159	7.61	0.190	
23. 23 7.80 23.45 8.07 24.40 9.06 24.90 9.64	58.8	26.6	2.12	0.237	2.59	0.162	10.4	0.300	
23.45 8.07 23.95 8.74 24.90 9.06	68.5	37.7	2.24	0.239	2.88	0.168	13.3	0.458	
13.95 8.74 24.40 9.06 24.90 9.64	73.7	51.5	2.41	0.241	3.13	0.171	14.7	0.545	
14.40 9.06 14.90 9.64	89.8	90.0	2.49	0.241	3.36	0.176	18.2	0.839	
(4.90 9.64 r 27 0.02	137	249	2.70	0.243	3.68	0.177	22.2	1.28	
	172	393	2.86	0.248	4.06	0.184	25.0	1.75	
12.6 9.20	213	567	3.07	0.248	4.45	0.189	29.1	2.41	
5.81 10.32	271	840×10^{-2}	3.30	0.252	5.68	0.223	35.1	4.38	
6.26 10.90			3.48	0.257	6.39	0.251	39.5	6.15	
6.76 11.58	DATA	SET 220*	3.68	0.259	6.93	0.265	43.6	7.88	
7.35 12.30			3.92	0.264	8.23	0.309	52.3	16.4	
7.89 13.07	1.70	0.645×10^{-2}	4.32	0.271	9.69	0.175	60.4	24.8	
	1.88	0.645	4.73	0.276	12.6	0.512	70.4	46.8	
	2.02	0.651	5.77	0.300	14.6	0.612	80.6	68.9	
	16 6	0 657	717	0 337	10.41	0.000	0.000 1. Ag	00 J	
T C	87.7 7 7 8	0.054	00 0	015.0	3 76	0.920		102	
	2 · · ·	0.000	0.10	104 0		1.4.1 10.1	7.76	201	
ATA SET 2104	11.7	700.0	0.4.61	104.0		40.1	7.02	011	
ATT 130 110		0.002	1 2 1	0.407	1.40	00.0	761	101	
1.73 2.68*10	3.40	0.674	14.9	969.0		21.2	147	201	
1 88 2 70	1.666	0.674	16.0	0 770	0.02	3.15	173	2/2	
2.02 2.70	3.83	0.673	21.3	1.20	82.6	8.04	000	579	
2.19 2.70	4.23	0.686	24.6	1.55	88.9	6.77	237	502	
2.73	4.79	0.685	27.2	2.00	114	151	276	934	
1 CT 2 T	5.54	0.710	11.5	1.23	461	214	202	1020×10 ⁻²	
1.00 2.7	7.13	0.757	37.4	4.80	164	335 × 10 ⁻²	4		
1 to 2 11					101				
	0.0	0.025	T - T	76.6					
	(') I	1.66/	*	0.01	NIN	121 223			
6/.7 01.4	7-61	0.1	1.00	1.22		·			
C/.7 7C.C	A-97	1.30	C.67	42.0	1. J	0.Ub3Lx 10			
5. 38 2. /B	20.9	1.54	106	123	1.70	0.0631			
7.43 2.78	33.5	3.79	119	180	1.82	0.0643			
8.35 2.83	49.2	11.8	127	192	1.92	0.0643			
0.0 2.85	54.9	17.3	172	358	2.11	0.0661			
1.0 2.93	67.1	30.0	200	517	2.24	0.0673			
1.9 2.99	1.9.1	56.5	240	645	2.45	0.0692			
4.2 3.10	99.4	116	268	782×10^{-2}	2.64	0.0718			
6.3 3.24	107	133			2.76	0.0738			
7.5 3.33	138	237	DATA S	ET 222*	2.91	0.0765			
1.1 3.69	165	345			3.21	0.0801			
7.4 4.85	191	446	1.62	0.154×10^{-2}	3.58	0.0846			
7.5 7.60	258	718	1.75	0.155	3.84	0.0894			
0.3 8.96	301	981×10^{-2}	1.88	0.158	4.17	0.0953			
3.3 11.0×10 ⁻²			2.06	0.158×10^{-2}	4.52	0.103×10^{-2}			

·

CONTRACTOR OF A DATE OF A

South and the second second

3.4. Nickel

There are more than 100 data sets available for the electrical resistivity of nickel. The information on specimen characterization and measurement condition for each of the data sets is given in table 11. The data are tabulated in table 12 and shown partially in figures 7 and 8.

Since nickel belongs to the same group in the periodic table as iron and is also ferromagnetic, the electrical resistivity of nickel is expected to resemble that of iron. For example, the solute resistivities of dilute nickel alloys are similar to those of dilute iron alloys in magnitude and in temperature dependence (Schwerer and Cuddy [148]). However, since nickel is not as strongly magnetic as iron (with a spontaneous magnetization of 6.4 kG as compared to 21.8 kG for iron), the magnetic effect on the electrical resistivity is not as strong in nickel as it is in iron. While the minimum in the longitudinal magnetoresistance at 4 K of a pure iron specimen occurs at \gtrsim 750 Oe (\sim 60 x 10³ Am⁻¹) (for example, see Fujii and Morimoto [112]), it occurs at \sim 250 Oe for pure nickel (Wycisk and Feller-Kniepmeier [209] and Fujii [210]). Furthermore, for iron the resistivity at the minimum can be as low as one third of the value at zero applied magnetic field. For nickel, it was only about 18% lower [209,210].

The electrical resistivity of nickel has not been investigated as widely as that of iron, and there has been apparently lesser effort spent in its purification. In fact, among the data sources reporting the electrical resistivity of nickel, less effort was made to analyze the impurity content of the specimen than those reporting the electrical resistivity of iron. Nonetheless, there are a few data sets which show very good agreement on the residual resistivity of pure nickel: $0.0033 \times 10^{-8} \Omega m$ at 2.32 K from White and Tainsh [210] (data set 31), $0.0031 \times 10^{-8} \Omega m$ at 1.85 K from Ehrlich et al. [212] (data set 73), and $0.0033 \times 10^{-8} \Omega m$ from Wycisk and Feller-Kniepmeier [209] (data set 96). The recommended values for the residual resistivity (at 1 K) is based on these data sets. The specimens of the first two sources were described as "high purity" and "pure", respectively. The specimen of the last source was 99.999% pure and was five-time electron beam zone-refined.

The temperature-dependent part of the electrical resistivity has been reported to contain mostly of a T^2 component at low temperatures (≤ 10 K): see,

117

HEGEBENG PAGE MLANK-NOT TILLED

for example, White and Woods [21] (data sets 33-34), Ehrlich and Rivier [213] (data set 10), Greig and Harrison [214] (data set 4), Fert and Campbell [215] (data set 48), Price and Williams [80] (data set 55), and Sudovtsov and Semenenko [203] (data sets 77,78). An analysis similar to that applied in treating the low-temperature data on the electrical resistivity of iron, i.e., plotting the quantity

$$\rho - \rho_0 - A \left(\frac{T}{\theta_R} \right)^5 \int_0^{\theta_R/T} \frac{x e^x}{(e^x - 1)^2} dx$$

with values of A and $\theta_{\rm R}$ equal to 39.1 x $10^{-6}\;\Omega\,m$ and 456 K, respectively, gives very similar results. It increases as T^2 at temperatures below ~ 50 K. It then varies much less rapidly with temperature: with some data sets (e.g., data sets 55,57) there is a plateau at \sim 110 K, and with some (e.g., data sets 3,43) there is a minimum at around the same temperature. At temperatures above 150 K, it increases more rapidly and approaches a T^3 dependence. The coefficient of the T² term (for temperatures below about 50 K) varies between $0.5 \times 10^{-5} \Omega m K^{-2}$ (data set 48) and $\sqrt{3.5} \times 10^{-5} \Omega m K^{-2}$ (data set 57), and furthermore there is no discernible correlation between these coefficients and the residual resistivities of the specimens. However, the agreement between data sets with the lowest reported residual resistivities are good. The data set of White and Tainsh [211] (data set 31) yields a coefficient of 2.7 x $10^{-5} \Omega m K^{-2}$ and a residual resistivity of $\sqrt{0.0033} \times 10^{-8} \Omega m$, that of Ehrlich and Rivier [213] (data set 10) yields 2.4 x $10^{-5} \Omega \text{ m K}^{-2}$ and 0.0031 x $10^{-8} \Omega \text{ m}$, respectively. The data set of Farrell and Greig [216] (data set 11) yields 2.6 x $10^{-5} \Omega m K^{-2}$ and 0.0095 x 10^{-8} Ω m, and that of Ehrlich et al. [212] (data set 73) yields 2.3 x $10^{-5} \Omega m K^{-2}$ and 0.0031 x $10^{-6} \Omega m$. The recommended values below 60 K are based on the above four data sets, with the values of the coefficient, 2.6 x $10^{-5} \Omega m K^{-2}$ is also the mean of the above four values. It should be mentioned that the plateau or the minimum region in the quantity

$$\rho - \rho_0 - A \left(\frac{T}{\theta_R}\right)^5 \int_0^{\theta_R/T} \frac{x e^x}{(e^x - 1)^2} dx$$

at around 110 K could not be eliminated by an effort in adjusting the values of A and θ_R . As a consequence, the value of θ_R was taken to be 456 K and the value of A was chosen so that the range of applicability of the T² term could be extended to as high a temperature as practicable. As an illustration, the

data of Farrell and Greig [216] (data set 11) deviate from the T^2 line by +0.005 x $10^{-8} \Omega m$ at 50 K; this deviation increases to -0.02 x $10^{-8} \Omega m$ at 60 K.

In the temperature range from about 60 K to room temperature, a number of authors reported data sets which agree well with each other: White and Woods [21] (data sets 33,34), Farrell and Greig [216] (data set 11), Laubitz et al. [217] (data set 52). In particular, the last two data sets merge very well at 90 K. The recommended values in this temperature range is based on the above four data sets, with more weight given to the last two.

For temperatures from the ice point up to the Curie point, a number of data sets agree to within $0\pm4\%$: Pallister [218] (data set 14), Powell et al. [219] (data sets 17,20), Kierspe et al. [78] (data set 37), Schroeder and Giannuzzi [98] (data set 51), Laubitz et al. [217] (data set 52), Potter [199] (data set 53), Schwerer and Cuddy [148] (data set 65), and Ahmad and Greig [220] (data sets 89,90). Of these, the data of Laubitz et al. and of Potter show particularly good agreement ($\pm2\%$). The recommended values in this temperature range are based on these results, with more weight given to those of Laubitz et al. [13] (data set 52) and of Potter [199] (data set 53).

The Curie temperature of nickel has been reported to be 631 K by Zumsteg and Parks [221] (data set 91), 631 K by Standley and Reich [222] (data set 2), 630 K by Dutta-Roy and Subrahmanyam [223] (data set 3), \sim 630 K by Laubitz et al. [13] (data set 52), 632.7 K by Jackson and Saunders [224] (data set 103), and from 629.3 to 629.8 K, depending on specimen, by Potter [199] (data set 53). Judging from the resistivity data of Pallister [218] (data set 14), the Curie temperature is \sim 627 K, of Kirichenko and Mikryukov [225] (data set 27), \sim 631 K, of Schwerer and Cuddy [148] (data set 65), \sim 628 K, of Kaul [226] (data set 67), 620-640 K, of Shirakawa [141] (data set 76), ~633 K, and of Schroeder and Giannuzzi [98] (data set 51), ~638 K. Among these sources, only two, Potter [199] (data set 53) and Zumsteg and Parks [221] (data set 91), give in detail the change of electrical resistivity at around the Curie temperature. The agreement between these are very good: $\pm 0.5\%$ below and $\pm 1\%$ above the Curie temperature. The recommended values in the vicinity $(\pm 25 \text{ K})$ of the Curie temperature are based on this reference, with more weight given to the result of Zumsteg and Parks at temperatures above the transition. The resultant values are within 0.3% of those calculated on the basis of the $d\rho/dT$ values reported by Jackson and Saunders [224].

At temperatures from the Curie point to about 1300 K, the following data sets fall into a band of width $\sim 2 \times 10^{-8} \Omega$ m: Pallister [218] (data set 14), Bode [227] (data set 16), Powell et al. [219] (data set 20), Davis et al. [228] (data set 32), Laubitz et al. [217] (data set 52), and Potter [199] (data set 53). The recommended values in this temperature range are based on these data sets, with more weight given to the data of Laubitz et al. [217] (data set 52). Data set 52 is also used as basis for recommendation for lower temperatures.

Unfortunately, most of the data sets mentioned in the previous paragraph are for temperatures below 1300 K. For higher temperatures, the available data sets show large discrepancies. In addition, the resistivity values for lower temperature given in these sets are quite different from the recommended values (for example, data sets 37,72). However, for temperatures slightly below the melting point, the data of Güntherodt et al. [92] (data set 93) and of Kita et al. [93] (data sets 100-101) are within $\sim 0.5 \times 10^{-8} \Omega m$ of each other. Extrapolations, either graphically or numerically using a cubic expression, from recommended values for lower temperatures give values that are also within $0.5 \times 10^{-8} \Omega m$ of the values reported by these authors. The recommended values are, therefore, obtained from the numerical extrapolation.

At temperatures immediately above the melting point, the available data sets show a spread of about 6 x $10^{-8} \Omega m$. Between the data of Güntherodt et al. [92] (data set 93) and of Kita et al. [93] (data sets 100-102), which well agree below the melting point, the difference is about 4 x $10^{-8} \Omega m$. The recommended value for the liquid phase at the melting point is based on the results of Güntherodt et al. [92] (data set 93), Seydel and Fucke [87] (data set 92). and Mokrovskii and Regel [158] (data set 56), which agree to within 0.2 x $10^{-8} \Omega m$. The temperature dependence of the electrical resistivity in the molten state has been generally reported to be linear, e.g., Kita et al. [93] (data sets 100,101), Güntherodt et al. [92] (data set 93), Seydel and Fucke [87] (data set 92), Samarin [94] (data set 87), Mokrovskii and Regel [158] (data set 56), Eliutin et al. [88] (data set 49), and Ono and Yagi [89] (data set 61). The recommended values are generated with a temperature coefficient of 0.011 x $10^{-6} \Omega m K^{-1}$, which is slightly (6%) lower than that given by Kita et al. [93], and slightly higher (\sim 1%) than that determined from the data of Güntherodt et al. [92] (data set 93).

The recommended values for the solid state both uncorrected and corrected for thermal expansion of the material and those for the liquid state corrected

for thermal expansion are presented in table 10, and the values except those corrected for thermal expansion of the solid are also shown in figures 7 and 8 along with the experimental data. These values at temperatures above 100 K are for nickel of purity 99.99% or higher, while those below 100 K are applicable only to highly purified zone-refined nickel having a residual resistivity of $0.00320 \times 10^{-8} \Omega m$. The estimated uncertainty in the recommended values is $\pm 5\%$ below 150 K, $\pm 3\%$ from 150 to 1300 K, $\pm 5\%$ from 1300 K to the melting point, and $\pm 10\%$ for the liquid state.

For slightly less pure nickel having different residual resistivity, its electrical resistivity values can be calculated from the recommended values using the Matthiessen's rule, which will not introduce serious errors. For example, the data of Ahmad and Greig [220] (data set 90) show that for a specimen with a residual resistivity less than 0.009 x $10^{-8} \Omega$ m, the application of Matthiessen's rule causes an error of about 2% at 40 K and about 1% at 260 K. Also the data of Greig and Harrison [214] (data set 4), Ahmad and Greig [220] (data set 89), Berger and Rivier [229] (data set 23), White and Woods [21] (data sets 33,34), and of Kemp et al. [130] (data set 43), which are for specimens with residual resistivities of the order of a few tenths of a n Ω m, show that the application of Matthiessen's rule causes errors generally of about 3% for temperatures below 300 K. The most interesting comparison is made with the data of Rowlands [230] (data set 57), since his data extend from liquidhelium temperatures up to above the Curie temperature. For this data set, the errors are less than 1% below 20 K, 10% at ~ 60 K, $\sim 6\%$ from ~ 100 to ~ 300 K, and drop to $\sim 3\%$ from ~ 500 K to above the Curie temperature. This behavior is consistent with the solute resistivities for dilute nickel alloys (see, for example, Schwerer and Cuddy [148]). Thus, when the Matthiessen's rule is used for calculating the electrical resistivity of less-pure nickel with a residual resistivity less than 0.05 x $10^{-6} \Omega m$, the values are likely to be lower by $\sqrt{3}$ than the true values from 40 K to room temperature, and are likely to lower by <1% at temperatures below 40 K and above the Curie temperature. For specimens of even lower purity, with a residual resistivity of about 0.3 x $10^{-8} \Omega m$, the probable errors are about 2% at high and at low temperatures, but may be as high as -10% at intermediate temperatures (40-300 K).

The recommended values for the solid state uncorrected for thermal expansion and those for the liquid state given in table 10 can be represented approximately by the following expressions to within $\pm 0.5\%$.

1-60 K: $\rho = 0.0032 + 2.5 \times 10^{-5} T^{2} + 39.1 \left(\frac{T}{456}\right)^{5} \int_{0}^{456/T} \frac{x^{5} e^{x}}{(e^{x}-1)^{2}} dx$

60-150 K:

$$\rho = 0.4214558798 - 2.07384562 \times 10^{-2}T + 3.48017305 \times 10^{-4}T^{2} - 8.609303313 \times 10^{-7}T^{3}$$
(36)

(35)

150-500 K:

$$\rho = -1.355285714 + 2.103190475 \times 10^{-2}T + 1.141428571 \times 10^{-5}T^{2} + 4.523809524 \times 10^{-6}T^{3}$$
(37)

500-600 K:

$$\rho = -50.1320558 + 2.978166536 \times 10^{-1}T - 5.156360117 \times 10^{-4}T^{2} + 3.824418489 \times 10^{-7}T^{3}$$
(38)

600-630 K:

$$\rho = 28.71 - 1.2315000 \times 10^{-1} (T_{C} - T) + 5.749999984 \times 10^{-4} (T_{C} - T)^{2}$$
(39)

631-670 K:

$$\rho = 28.71 + 9.060833333 \times 10^{-2} (T-T_C) - 1.809583333 \times 10^{-3} (T-T_C)^2 + 3.9416666667 \times 10^{-5} (T-T_C)^2 - 3.5416666667 \times 10^{-7} (T-T_C)^4$$
(40)

670-1400 K:

$$\rho = -6.329325957 + 8.023011038 \times 10^{-2} T - 4.451156858 \times 10^{-5} T^{2} + 1.201757591 \times 10^{-8} T^{3}$$
(41)

1400-1728 K:

$$\rho = -9.255955877 + 7.140577598 \times 10^{-2} T - 2.771379283 \times 10^{-5} T^{2} + 5.589224949 \times 10^{-9} T^{3}$$
(42)

1728-3000 K:

$$\rho = 63.22 + 1.10 \times 10^{-2} T \tag{43}$$

It should be emphasized that these expressions do not necessarily suggest any theoretical justification, and should be treated, most appropriately, as numerical aids only. It should also be understood that giving these expressions does not imply a recommendation for the temperature derivative of the electrical resistivity.

т	(ρ	T		ρ
	uncorrected	corrected		uncorrected	corrected
1	0.00320	0.00320	630	28.71	28.86
4	0.00360	0.00359	670	31.06	31.24
7	0.00443	0.00442	700	32.14	32.34
10	0.00573	0.00572	800	35.52	35.80
15	0.00901	0.00899	900	38.58	38.95
20	0.0140	0.00140	1000	41.41	41.88
25	0.0212	0.0212	1100	44.06	44.65
30	0.0317	0.0316	1200	46.62	47.33
40	0.0678	0.0676	1300	49.15	50.00
50	0.135	0.134	1400	51.73	52.73
60	0.242	0.242	1500	54.36	55.54
70	0.377	0.376	1600	56.94	58.31
80	0.545	0.544	1700	59.50	61.07
90	0.741	0.739	1728	60.22(s)	61.85(s)
100	0.959	0.957	1728		82.23 ^b (l)
150	2.21	2.20	1800		83.02 ^b
200	3.67	3.67	1900		84.12 ^D
250	5.32	5.32	2000		85.22 ^b
273	6.16	6.16	2500		87.72 ⁵
293	6.93	6.93	3000		90.22 ^D
300	7.20	7.20			
350	9.34	9.35			
400	11.78	11.80			
500	17.67	17.72			
600	25.54	25.66			

TABLE 10. RECOMMENDED VALUES FOR THE ELECTRICAL RESISTIVITY OF NICKEL^a

[Temperature, T, K; Electrical Resistivity, ρ , $10^{-8} \Omega$ m]

^a The values are for nickel of purity 99.99% or higher, but those below 100 K are applicable only to nickel having a residual resistivity of 0.00320 x 10⁻⁸ Ωm. The columns headed uncorrected and corrected refer to values uncorrected and corrected for thermal expansion, respectively. Solid line separating tabular values indicates solid to liquid state transformation. Provisional value.

Data No.	Kef.	Author (s)	Year	Method Used	Temp. Range,K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
	129	Kondorskii, E.I., Galkina, O.S., and Chernikova, L.A.	1958	×	2~2	N	Chemically pure; wire specimen 0.1 to 0.2 mm in diam and 150 to 160 mm long; annealed in vacuum at 1173 K for 1 h; slowly cooled at 100 K/h; residual resistivity 0.20 x 10^{-6} A m.
7	222	Standley, K.J. and Reich, K.H.	1955		293,473	Ĩ	Ingot heated in argon to about 1273 K for 12 h; slowly cooled; rolled to a sheet about 0.5 mm thick; discs of the required dismeter punched out; polished on fine emery, annealed in vacuo and electrolytically polished, then annealed in vacuum; $T_{\rm C}$ = 631 K.
°.	223	Dutta-Roy, S.K. and Subrahmanyam, A.V.	1969	2	80-735		"Spectrographically pure," from Johnson Matthey Co.; 6 x 0.3 x 30 mm; annealed for 24 h at 1073 K in a vacuum furnace; cleaned in aqua regia; T _C = 630 K.
4	214	Greig, D. and Harrison, J.P.	1965	o	5.6-41	JM 893; A	Pure; 0.0016 total impurity (mostly Fe and Si); polycrystalline; grain size 0.1 mm ; from Johnson Matthey Co. (JM 893); annealed at 1023 K for 12 h; resistivity values calculated from reported ideal resistivity and ρ_{0}/L_{0} ratio (2.11 \pm 0.01 W ⁻¹ cm ² /K ⁻²).
Ś	231	Svensson, B.	1936	₽	323-623		0.102 Fe, 0.036 Al and S1 each; from Hilger of London; 1 mm in diam and 1 cm long; annealed at 1173 K; resistivity values calculated from measured resistance ratios and a $\rho(273 \text{ K})$ value of 6.58 x 10 ⁻⁸ Ω m from Landolt-Börnstein: Physik-Chem. Tabellen Σ Auft. 5, 1050 (1923).
Ŷ	161	Broom, I.	1952	8	90-373		0.12 Mg, <0.05 Cr, Cu and Mn each, 0.03 C, and 0.01 Co; wire specimen 0.056 cm in diam; annealed at 873 K for 2 h, furnace cooled.
1*	232	Lavine, J.M.	1961	•	73-633	499 alloy	99.9 pure; from Driver Harris Co.; T_{C} = 631 K.
#	176	Kondorskii, E.I. and Sedov, V.L.	1960	۲	4.2		Electrolytically pure; 5.9 mm in diam and 112 mm long.
6	176	Kondorskii, E.I. and Sedov, V.L.	1960	<	4.2		Technically pure; cylindrical specimen 5,9 mma in diam and 112 mm long; vacuum annealed at 1273 K for 8 h; furnace cooled.
10#	213	Ehrlich, A.C. and Rivier, D.	1968		1.6-19		"High purity"; polycrystalline plate, electropolished to a thickness of 0.19 mm; $\rho(293 \text{ K})/\rho(4.15 \text{ K}) \approx 2200;$ only $\rho(T) - \rho(0)$ reported where $\rho(0)$ is the resistivity extrapolated to 0 K from data in the 1.75 to 4.15 K range, in which the resistivity is reported to be proportional to T^2 .
11	216	Farrell, T. and Greig, D.	1968	<	4.2-273		Pure; 3 mm in diam and 9 cm long; annealed for 15 h at 1123 K; resistivity values calculated from reported $\rho(0)$ and tabular values of $\rho(T)$.
12	233	Kondorskii, E.I., Galkina, O.S., and Chernikova, L.A.	1957	<	1.7-20	N	99.9 pure; wire specimen 0.1 to 0.2 mm in diam; supplied by Central Scientific Research Institute of Ferrous Metallurgy; cold drawn; annealed in neutral gas at 1173 K for 1 to 12 h; residual resistivity 1.54 x 10^{-8} Ω m.
* Not	shown	in figure.		1			

Set.	Ref. No.	Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
1	234	Kurbanniyazov, N., Cheremushkina, A.V., and Akmuradov, B.A.	1973	<	373-773	d	Pure; specimen of dimensions $3 \times 6 \times 100$ mm; homogenize annealed in vacuum at 1273 K for 24 h, slow cooled in furnace; values from graph.
14	218	Pallister, P.R.	1965	<	273-1550	ы	99.84 N1, <0.03 Fe, <0.01 A1, Co, Cr, Cu, Ng, Mn, Mo, Si, Sn, T1, Zn, and Zr each, <0.005 Pb and <0.002 B; supplied by International Nickel Co. (Mond) Ltd.; annealed; measurements made in vacuum; smooth values from table; reported electrical resistivities based upon room temper- ature dimensions.
15	235	Sager, C.F.	1930	œ	327~1016		Pure; wire specimen about 0.2 cm in diam and 35 cm long; electrolyzed from Mond anodes; vacuum melted under a pressure of 0.3 mmHg, chill cast, forged, hot rolled and cold drawn through a steel die plate; flash annealed, held at 1023 K for "considerable periods" and "later more thoroughly annealed"; current and potential leads of nickel silver soldered to specimen; density 8.74 g cm ⁻³ .
16	227	Bode, K.H.	1961	+	1098-1241		99.95 pure; wire specimen 1 mm in diam; vacuum melted, cast, polished annealed for 12 h at about 1273 K; measured by compensation method.
17	219	Powell, R.W., Tye, R.P., and Hickman, M.J.	1965	×	293-1123	Sample l	<pre><0.03 Fe, <0.01 Al, Cr, Co, Cu, Mg, Mn, Mo, Si, Sn, Tl, Zn, and Zr each, <0.005 Pb, and <0.002 B; spectroanalyzed by International Nicke Co.; tubular specimen of 1.272 cm I.D., 1.908 cm 0.D. and 20 cm long; supplied by the Castner Kellner Alkali Co.; density 8.61 g cm⁻³.</pre>
18	219	Poweil, R.W., et al.	1965	~	373-773	Sample 2	"Very high purity"; electrolytic; tubular specimen of 0.634 cm I.D., 2.801 cm 0.D., and 19 cm long; supplied by National Engineering Lab.; density 8.90 g cm ⁻¹ .
19	219	Powell, R.W., et al.	1965	<	293-623	Sample 4	Commercial N1; rod specimen 2.54°cm in diam and about 20 cm long; supplied by Explosives Research and Development Establishment.
20	219	Powell, R.W., et al.	1965	×	293-1323	Sample 5 JM Lab, No. 4497	"High spectrographic purity"; trace amounts of Al, Ca, Cu, Li, Mg, Si Ag, and Na; rod 0.5 cm in diam and 15 cm long; supplied by Johnson, Matthey and Co.; density 8.91 g cm ⁻¹ .
21	236	Martynyuk, M.M. and Tsapkov, V.I.	1973	t	298,1726		99.93 pure; specimen 0.3-1 mm in diam and 50 cm long; specimen heated in air by a 400 µsec pulse of 1-4 kAmp; voltage and current measured by double beam pulse oscilloscope; resistivity ¢t melting point deter- mined from break points corresponding to the onset and end of fusion on the relative resistance curve; data not corrected at higher temper- ature.
22	229	Berger, L. and Rivier, D.	1962	£	4.2-292	(1) [105]N	Specimen 0.15 cm in diam and 5.2 cm long; supplied by Johnson, Mathe and Co.; annealed for 4 h at 1273 K in a vacuum of 10 ⁻⁵ mmHg; furnace cooled at a rate of 150 K/h; p(273 K)/p(4.2 K) = 60.
234	229	Berger, L. and Rivier, D.	1962	80	4.2-273	(11) 1105 M	Specimen 0.19 cm in diam and 5.0 cm long; from the same stock as the above specimen; annealed for 10 h at 1573 K in hydrogen at 1573 K in a vacuum of 10 ² mmHg for 2 h; p(273 K)/p(4.2 K) = 298.
ź	BUICH	in ligure.					

Set .	ke f.	Author (s)	Year	Method Used	Temp. Range,K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
*	237	Kronmueller, H. and Buck, O.	1964	*	4-273		99.99 pure; from Johnson, Matthey and Co.; single crystal with one axis parallel to <111>; specimen 3.2 mm in diam and 120 mm long.
4 5.7	238	Neimark, B.E. and Bykova, T.I.	1965		293-773	No. 1	99.87 (Ni + Co); tube 8.51 mm 0.0. and 8.025 mm I.D.; smoothed values from table.
26#	238	Neimark, B.E. and Bykova, T.I.	1965		373-748	No. 2	Tube 12.96 mm 0.D. and 11.025 mm I.D.; smoothed values from table.
2)	225	Kirichenko, P.I. and Mikryukov, V.E.	1964		313-1172		99.999 [†] pure; 0.3 cm in diam and 30 cm long; forged from sheet; an- nealed in vacuum for 48 h at 1173 K; furnace cooled.
28	239	Jain, S.C., Goel, T.C., and Chandra, I.	1967	t	1152-1320		99.95 pure; filaments 0.05 cm thick, 1 cm wide, and 14 cm long; ob- tained from Johnson, Matthey and Co.; data from figure; experimental method same as Jain and Krishnan, Proc. R. Soc. London, <u>A225</u> , 7, 1954.
29	240	Watson, T.W. and Robinson, H.E.	1964	2	110-803		99.85 N1, 0.11 Co, 0.026 Cu, 0.006 Fe, 0.001 A1, <0.004 S1, <0.002 T1, <0.001 Cr and Mg each, and <0.0005 Mn; electroformed nickel from International Nickel Co.; 2.54 cm in diam and 37 cm long; smoothed values from table.
00	240	Watson, T.W. and Robinson, H.E.	1964	٨	384-680		The above specimen measured with decreasing temperature.
31	211	White, G.K. and Tainsh, R.J.	1967		2.3-14		"High purity"; speicmen 0.1 cm × 0.1 cm × 7 cm; prepared by Bell Telephone Laboratories; annealed in vacuum of 10 ⁷ Torr at 773 K; p(273 K)/p(4 K) = 2500.
32	228	Davis, M., Densem, C.E., and Rendall, J.M.	1955		293-1273		0.01-0.2 0, 0.07 C, 0.016 S1, 0.013 Fe, 0.003 S, 0.0005 Mn, and 0.0003 Mg; grade A carbonyl nickel powder; supplied by Mond Nickel Co.; sintered and annealed; density 8.9 g cm ³ ; Curie point 626 K.
5	21	White, C.K. and Woods, S.B.	1959	U	4.2-298	N1 2	99.997 pure, 0.0010 Fe, 0.0010 Si, 0.0003 Cr and Mg each, 0.0002 Ca, Cu, and Mn each, and 0.0001 Ag, from Johnson, Matthey and Co. (JM 10389); rod specimen 2 mm in diam and 6 to 8 cm long; vacuum annealed at 1073 K; resistivity values calculated from reported ρ_1 , $\rho(4, 2 \text{ K})/\rho(295 \text{ K}) = 3.23 \times 10^{-3}$ and $\rho_1(295 \text{ K}) = 7.04 \times 10^{-3}$ G
34	21	White, G.K. and Woods, S.B.	1959	с	4.2-252	N1 3	Similar to the above specimen except (1) specimen 0.63 mm in diam, (2) resistivity ratio $\rho(4,2 \text{ K})/\rho(295 \text{ K}) = 4.51 \times 10^{-3}$, (3) $\rho_1(295 \text{ K}) = 7.33 \times 10^{-8} \Omega$ m; because of slight uncertainty in R/A , ρ_1 was normalized to the value for the above specimen for which R and A are more accurately known.
35	241	Reddy, B.K. and Goel, T.C.	1975	>	1163-1641		99.95 pure; tubular specimen 0.75 cm 1.D., 0.3 mm wall thickness, and 18 cm iong; obtained from Johnson, Matthey and Co.; specimen heated for about 1 h at -1630 K and rooled to room tumperature repeatedly for 6 or 7 times.
¥ot •	nuode	in figure.					

و المراقب المر وي المراقب المر

 97 Kovenskii, I.I. and 1963 78 Kierspe, W., and 1967 Samsonov, G.V. 1967 Samsonov, G.V. 1967 Samsonov, G.V. 1967 Samsonov, S.K. and 1961 Bitras, R.R. and 1961 bey, S.K. and 1961 bevelopment Conska, H. N. 1955 Laboratories for Research and Development Laboratories for Research and Development 244 Coltman, R.R., and 1967 Klabunde, C.E., and Ream, J.K.N. 1967 245 Sharma, J.K.N. 1967 313 130 Kemp, W.R.G., and Mitte, G.K. 1927 313 130 Kemp, W.R.G., and 1956 43 130 Kemp, W.R.G., and 1956 44 246 Masumoto, H. 1927 bittrich, K. 1971 247 Rubanenko, I.R. and 1969 Crossman, M.I. Reden, M.I. Renes, P.G., and Revolution, I.R. and Revolu	Method Used	Temp. Range, K Do	Name and Specimen signation	Composition (weight percent), Specifications and Remarks
 7 78 Kierspe, W., and Conska, H. and Conska, H. Conska, R., and Conska, R. and Dev, S.K. 33* 243 Eirss, R.R. and Development 80 244 Franklin Institute, 1953 Laboratories for Research and Development 81 179 Niccolai, G. 1967 Redman, J.K.N. 1967 Redman, J.K.N. 1967 Redman, J.K.N. 1968 82 245 Sharma, J.K.N. 1967 Redman, W.R.G., and Mitte, G.K. and Mitte, G.K. 1928 83 130 Kemp, W.R.G., and Masumoto, H. 1927 Dittrich, K. 1927 Dittrich, K. 1921 Dittrich, K. 1921 Reseman, M.I. Redman, M.I. Redman, M. Redman, J.K.N. 1968 84 246 Masumoto, H. 1927 Dittrich, K. 1921 Dittrich, K. 1921 Dittrich, K. 1921 Reseman, M.I. Redman, Redman, P. C.A. 	+	891-1673		9.86 Ni, 0.10 C, 0.01 Co, 0.008 Cu, 0.004 Fe, and 0.002 Si and S ach; wire specimen; measured in argon atmosphere, specimen heated by assing an electric current through; smoothed values from figure.
 36* 242 Biras, R.K. and 1961 Dey, S.K. 1953 39* 243 Franklin Institute, 1953 1.aboratories for Research and Development 40 244 Coltman, R.R., and Redman, J.K. 1967 419 Niccolai, G. 1908 419 Niccolai, G. 1908 419 Niccolai, G. 1966 4245 Sharma, J.K.N. 1967 43 130 Kemp, W.R.G., and Mitte, G.K. 43 130 Kemp, W.R.G., and Mitte, G.K. 44 246 Masumoto, H. 1927 45 Lucken, A. and Dittrich, K. 47 248 Mitchell, M.A., Reynolds, C.A. 	8	73-1668		0.0003 Si, 0.0002 Fe and Mg each, <0.0001 Al, Cu and Ag each; ob- ained from Koch-Light Laboratories Ltd.; smoothed values from figure
 194 243 Franklin Institute, 1953 Laboratories for Research and Development 100 244 Coltman, R.R., and Redman, J.K. 1967 Redman, J.K.N. 1908 1179 Niccolai, G. 1908 130 Kemp, W.R.G., and Mitte, G.K. 1310 Kemp, W.R.G., and Mitte, G.K. 1310 Kemp, W.R.G., and Mitte, G.K. 14 246 Masumoto, H. 1927 Dittrich, K. 1927 Dittrich, K. 1927 Dittrich, K. 1928 Rubanenko, I.R. and 1959 Grossman, M.I. 1971 Reynolds, C.A. 		78-1306		moothed values from graph of $ ho$ vs. T/0, with $ heta$ apparently equal to 70 K.
 244 Coltman, R.R., 1967 Klabunde, C.E., and Redman, J.K. 1908 11* 179 Niccolai, G. 1908 245 Sharma, J.K.N. 1967 13 130 Kemp, W.R.G., and Mitte, G.K. 1956 4 246 Masumoto, H. 1927 163 Eucken, A. and 1927 163 Eucken, A. and 1969 247 Rubanenko, I.R. and 1969 37 248 Mitchell, M.A., 1971 Reynolds, C.A. 		73-830	-	o details reported.
 1* 179 Niccolai, G. 1908 2 245 Sharma, J.K.N. 1967 13 130 Kemp, W.R.G., and Mite, G.K. 1956 4 246 Masumoto, H. 1927 5 163 Eucken, A. and 1927 6 247 Rubanenko, I.R. and 1969 6 247 Rubanenko, I.R. and 1969 7 248 Mitchell, M.J. 1971 7 248 Mitchell, M.J. 1971 		3.2		9.99 ⁺ nominal purity; 0.025 cm in diam and 5 cm long; annealed at 223 K in air at a pressure of 8 x 10 ⁻⁶ Torr; furnace-cooled.
 2 245 Sharma, J.K.N. 1967 13 130 Kemp, W.R.G., and White, G.K. 1956 4 246 Masumoto, H. 1927 5 163 Eucken, A. and 1927 6 247 Rubanenko, I.R. and 1969 6 247 Rubanenko, I.R. and 1969 7 248 Mitchell, M.A., 1971 Reynolds, C.A. 	æ	84673		ire specimen 0.5 mm in diam and 8 m long wound on an insulating pool.
 3 130 Kemp, W.R.G., and Klemens, P.G., and White, G.K. 1927 4 246 Masumoto, H. 1927 5 163 Eucken, A. and 1927 6 247 Rubanenko, I.R. and 1969 6 247 Rubanenko, I.R. and 1969 7 248 Mitchell, M.A., 1971 7 248 Mitchell, M.A., Ryonids, C.A. 	D	1.5,293		9.995 pure; polycrystalline; wire specimen obtained from Johnson, atthey and Co.; ℓ/A ratio 2.88 x 10^3 cm ⁻¹ .
 4 246 Masumoto, H. 1927 5 163 Eucken, A. and 1927 6 247 Rubsnenko, I.R. and 1969 7 248 Mitchell, M.A., 1971 7 248 Mitchell, M.A., Reynolds, C.A. 	U	4.2-293		9.99 ⁺ pure, traces of Al, Ca, Cu, S1 and Ag, and very faint traces f L1, Ng, and Na; 2 mm in diam; obtained from Johnson, Matthey and ω ; annealed in vacuum at 1023 K for 4 h; ideal electrical resistivity, ρ_1 , from figure; ρ_0 taken as 0.0347 x 10 ⁻⁸ Ω m, $\rho = \rho_1 + \rho_0$.
 5 163 Eucken, A. and 1927 b1ttrich, K. 1927 6 247 Rubanenko, I.R. and 1969 6 248 Mitchell, M.A., 1971 7 248 Mitchell, M.A., Reynolds, C.A. 		303		.10 Fe, 0.037 C, 0.019 S, 0.013 Cu, 0.006 S1, and trace. of A1, Co, n, and P; 5 mm in diam and 20 cm long: obtained from Mond & Co.; ast and machined; annealed at 1073 K for 40 min.
6 247 Rubanenko, I.R. and 1969 Grossman, M.I. 7 248 Mitchell, M.A., 1971 Klemens, P.G., and Reynolds, C.A.	>	80,273	н	lectrolytic.
.7 248 Mitchell, M.A., 1971 Klemens, P.G., and Reynolds, C.A.		293		x 7 x 28 mm; measuring temperature assumed 293 K.
	v	4.2	0. 5 .	9.9 pure; single crystal, grown by a variation of the Bridgman ethod; specimen axis along <lil> direction; annealed in vacuum at 203 K for 48 h.</lil>
16* 215 Fert, A. and 1968 Campbell, I.A.		4-79	-	deal resistivity reported only.

28:00

ar 1

TABLE 11. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF NICKEL NI (continued)

R S E		Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
49	88	Eliutin, V.P., Turov, V.D., and Maurakh, M.A.	1965	×	1013-1997		98.5-99.0 pure; electrolytic; liquid state obtained by melting in graphite crucible either in an atmosphere of helium or in vacuum.
501	249	Starr, C.D.	1969		811	Nickel 270	100 nominal purity; temperature coefficient of resistivity $\alpha(298,378) = 0.00565$ and $\alpha(218,298) = 0.00461/deg;$ data from table at 811 K only.
514	86	Schroeder, K. and Glannuzzi, A.J.	1969		375-825		99.999 pure; wire specimen; annealed in an inert gas atmosphere (92 He, 8 Ar) for 2 h at \sim 150 K above the Curie temperature; resistivity values calculated from reported $\rho(T)/\rho(T_C)$, with $\rho(T_C) = 29.288 \times 10^{-8} \Omega m$, taken from data set 52.
22	217	Laubitz, M.J., Hatsumura, T., and Kelly, P.J.	1976	۲.	90-1250		99.999 pure (nominal); 0.0016 C, 0.0014 Si, 0.0007 Fe, 0.0006 Cu, 0.0005 Al and 0 ₂ , 0.0003 F, 0.0002 K, Na, and S each, 0.0001 Ta, 0.00007 CI, 0.00005 Ca, 0.00003 Ti and N ₂ each, 0.00002 Cr and Mn each, 0.00001 Pb, Mg and Ag each, 0.00004 V and 0.00002 B by mass spectrographic analysis: from Metals Research Ltd.; polycrystalline; spectrographic analysis: from Metals Research Ltd.; polycrystalline; spectrographic analysis: from Metals Research Ltd.; polycrystalline; spectrographic analysis: from Ad and 10 cm 0.00004 V and 0.00002 B by mass spectrographic analysis: from Ad and Ag each, 0.00004 V and 0.00002 B by mass spectrographic analysis: from Metals Research Ltd.; polycrystalline; spectment 2 cm in diam and 20 cm long; unnealed in vacuum of 5 x 10 ⁻⁶ Torr at 1400 K for 2 h; slow cooled for measurements between 300 and 1250 K; machined to 1 cm in diam and 10 cm long, unannealed for measurements between 90 and 370 K; density 8.908 ± 0.001 g cm ⁻³ at 293 K; T _c about 630 K; residual resistivity ratio 220 ± 10; smoothed values from table.
* E5	. 199	Potter, H.H.	1937	>	77-1153		99.971 pure; 0.018 Fe and 0.010 C; obtained from Adam Hilger; specimen 2 mm in diam and 8 cm long, bent into U shape; resistance ratio R/R_{273} K reported; reference value of $\rho(273 \text{ K}) = 6.16 \times 10^{-6} \Omega \text{ m}$ assumed; T _C reported to be 629.3 or 629.8 K, depending on specimen.
54*	250	Araj, S.	1961	>	0-1000		Pure; 0.01 Fe and Cu each, and traces of C. Co, S, and Si; wire speci- men 1.5 mm in diam; enclosed in silica tubes evacuated to 10 ⁻⁵ mmHg; annealed for 68 h at 1400 K; quenched in saline solution at room tem- perature; original data reported graphically; extracted from the re- ported smooth curve.
\$	80	Price, D.C. and Williams, G.	1973	۲	4-300		99.998 pure; specimen 0.15 x 0.2 x 10 cm; supplied by Johnson, Matthey and Co.; cold rolled between Melinex sheets, etched and annealed for 24 h in vacuo at 873 K; ideal resistivity reported graphically; total resistivity obtained by adding the reported residual resistivity $\rho(4.2 \text{ K}) = 0.0299 \times 10^{-6} \Omega \text{ m}$ to the reported ideal resistivity.
9 2	158	Mokrovskii, N.P. and Regel, A.R.	1953	ĸ	1073-1964		99.7 pure; specimen contained in corundum crucible v12 mm in diam and 25 mm high; smoothed values from graph.
57	230	Rowlands, J.A.	1973	¥	1.7-672		Pure; from Sherritt Gordon Mines, annealed; ቦo = 0.28195 x 10 ⁻⁶ በ m; data in tabular form supplied by author.

.

* Not shown in figure.

31 Now, M.Y. 1964 - 993-3 (north start st	Pata Set a	Ref.	Author (s)	Year	Method Used	Temp. Range,K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
30 31 Wow, N.Y. 1960 - 99-1479 Explate to the above aperiame accept electrically beated in at at at 17.3 K for 53 min. 60 331 Boa, N.Y. 1966 - 910-1608 Statiate to the above aperiame accept electrically beated in at at at at 17.3 K for 53 min. 61 391 Boa, V. and Vagi, T. 1973 8 1123 K for 53 min. 910-1608 Statiate accept electrically beated in at at at. 113.4 K at at at. 62 323 Schnaffer, A.L., and Vagi, T. 1932 8 1230-1898 910-1608	85	251	Vong, H.Y.	1966	Ť	998-1381		99.92 pure; wire specimen 0.081 cm in diam and 61 cm long; supplied by British Driver-Harris Co. Ltd.; electrically heated in air at 1173 K for 5 min, oxide formed had olive-gree color; measured in vacuum of about 2 x 10 ⁻⁶ Torr; data extracted from figure.
60 33. Mong, N.Y. 196. - 910-108 Spailar to the above spectamen except electrically hereed in at or the standard regit. T. 197. R regilization standard regilization provide above spectament of the at or the standard regilization standard regilization regilization standard regilization standard regilization regilization standard regilization regi regilization regilization regi regilization regi regili	59	251	Wong, H.Y.	1966	+	993-1479		Similar to the above specimen except electrically heated in air at 11/3 K for 15 min.
 80 Ono, Y. and Yagi, T. 1972 R 1728-1898 99.⁹ Pure: In liquid actes: contained in a 10 mm. Literation and tag a	60	251	Wong, H.Y.	1966	t	970-1408		Similar to the above specimen except electrically heated in air at 1173 K for 25 min.
 Schindler, A.I., 1956 Schindler, A.I., 1956 Latt, N.J., and Sauth, K.J., and Sauth, K.	61	89	Ono, Y. and Yagi, T.	1972	×	1728-1898		99.9 ⁺ pure; in liquid state; contained in a 10 mm I.D. recrystallized alumina crucible; density data of Saito et al. (Bull. Res. Inst. Min. Dress. Metall., Tohoku Univ., $\underline{25}$, 67, 109, 1969) used to calculate specimen volume; data given as the formula $\rho(10^{-8} \text{Rm}) = 0.0280 \text{T(C)} + 44.32.$
 6.1* 136 Dewar, J. and 1893 B 70-469 Pure; prepared by Mr. Mond, nickel tubes formed by passing vapor of into a very films spittal on lattels tubes formed by passing vapor of into a very films. J.A. 7.1. 12.1. 11. 11. 11. 11. 11. 11. 11. 11	62*	252	Schindler, A.I., Smith, R.J., and Salkovitz, E.I.	1956	6 2	6-292		99.99 pure; material obtained from International Nickel Co.; specimen 2.0 mm in diam and 16.3 cm long; fabricated from spectrographic rod; vacuum annealed at 1073 K for 2 h then gradually cooled for 24 h.
64.*253Dewar, J. and Flewing, J.A.1892B91-368Pure, carbonyl nickel; wire specimen had probable dimensions of 0.0076 cm in diam and 50 to 100 cm long; from Johnson, Matthey and Co.; measurement of resistance repeated several times, mean observed resistivity reported; data uncorrected for thermal expansion; data extracted from table.65a148Schwerer, F.C. and Cuddy, L.J.1970V4-940"High purity"; rod specimen 1.8 mm in diam; p(4.2 K) = 0.024 x 10^{-8} 3m; measurement made "quasi-statically" with temperature decreasing at 1 C min ⁻¹ .66234Kalinovich, D.F.1972657-1291"High purity"; rod specimen 1.8 mm in diam; p(4.2 K) = 0.024 x 10^{-8} 3m; measurement made "quasi-statically" with temperature decreasing at 1 C min ⁻¹ .66234Kalinovich, D.F.1972657-1291Pure; original data reported graphically.67236Kaui, S.N.1972657-1291Pure; original data reported graphically.68234Kovenskii, I.TSaolin, M.D.; and69236Kaui, S.N.1974C6920Kaui, S.N.1974C6920Kaui, S.N.1974C6920Kaui, S.N.1974C6920Kaui, S.N.1974C6920Kaui, S.N.1974C6920Kaui, S.N.1974C6920Kaui, S.N.1974C6920Kaui scone supplied by author.	63*	138	Dewar, J. and Fleming, J.A.	1893	œ	76-469		Pure; prepared by Mr. Mond, nickel tubes formed by passing vapor of nickel carbonyl through heated glass tube, portion of nickel tube cut into a very fine spiral on lathe; resistance ratio reported; data uncorrected for thermal expansion; data extracted from table; $p(273 \text{ K}) = 12.323 \times 10^{-8} \Omega$ m, Matthiesen's value as given in Everett's "Physical Units" used to convert resistance ratio to resistivity; temperatures at 76.1, 191.3, and 229.6 K measured by platinum resistance thermometer.
 65* 148 Schwerer, F.C. and 1970 V 4-940 "High purity"; rod specimen 1.8 mm in diam; p(4.2 K) = 0.024 x 10⁻⁶ ?m; measurement made "quasi-statically" with temperature decreasing at 1 C min⁻¹. 66 254 Kalinovich, D.F., 1972 657-1291 Pure; original data reported graphically. 66 254 Kalinovich, D.F., 1972 657-1291 Pure; original data reported graphically. 67 256 Kaul, S.N. 1974 G 84-900 Values from table supplied by author. 	64*	253	Dewar, J. and Fleming, J.A.	1892	£	91-368		Fure, carbonyl nickel; wire specimen had probable dimensions of 0.0076 cm in diam and 50 to 100 cm iong; from Johnson, Matthey and Co.; measurement of resistance repeated several times, mean observed resistivity reported; data uncorrected for thermal expansion; data extracted from table.
 66 254 Kalinowich, D.F., 1972 657-1291 Pure; original data reported graphically. Kovenskii, I.I., Smolin, M.D., and Stateenko, V.M. 67 226 Kaul, S.N. 1974 G 84-900 Values from table supplied by author. 	65*	148	Schwerer, F.C. and Cuddy, L.J.	1970	>	4-940		"High purity"; rod specimen 1.8 mm in diam; p(4.2 K) = 0.024 × 10 ⁻⁸ 3 m; measurement made "quasi-statically" with temperature decreasing at 1 C min ⁻¹ .
67 226 Kaul, S.N. 1974 G 84-900 Values from table supplied by author.	6 6	254	Kalinovich, D.F., Kovenskii, I.I., Smolin, M.D., and Stataenko, V.M.	1972		657-1291		Pure; original data reported graphically.
	67	226	Kaul, S.N.	1974	3	84-900		Values from table supplied by author.

 d. 10. kurdi, 1.A. and J.32. A 4.5.35 Polycrystallate vice 0.03 ca in diam and 5 ca long; data free solid transition kurtices have solid solid	8 % B		Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
 Boulementa, LM, 1951 - 29,1736 Boulementa, LM, 1953 - 29,1246 Boulementa, LM, 1951 - 2, 29,126 Boulementa, LM, 1951 - 2, 29,126 Boulementa, LM, 1951 - 2, 29,126 Boulementa, LM, 1951 - 2, 29,129 Boulementa, LM, 1951 - 2, 29,130 Boulementa, LM, 1951 - 1, 295 Boulementa, LM, 1951 - 1, 200 Boulementa, LM, 1950 - 1, 200 Boulementa, LL, and 1950 - 1, 200 Boulementa, LL, and 1950 - 1, 200 Boulementa, LL, and 1950 - 1, 200 Boulementa, LL, and	3	103	Norak, J.A. and Blewitt, T.H.	1972	¥	4.5,295		Polycrystalline; wire 0.025 cm in diam and 5 cm long; data from table
70 23 Generative, LW. 1915 - 39.1736 Statist to the above except meanered by heating the vire alouty in versus. 71 23 Genere, W., and Shila, W., and Shila, Y., and Shila, Y., and Shila, W., and Shila, Y., and Shila, Y., and Shila, Y., and Shila, J., and Shila, Y., and Y., and Y., and Shila, Y., and	69	255	Borodovskala, L.N. and Lebedev, S.V.	1955	+	293,1726		Wire specimen 0.015 cm in diam; measured by pulse heating of the wire with current density 6×10^{6} to 5×10^{6} Amp cm ⁻² ; voltage and current measured by pulse oscillogram.
1 24 Concert, W. and Millian, W. 191 + 293 91.9 purer; Mond Michel; vacuum mached in Migh Frequency over; our- consistent Millian, W. 1961 A 293-1473 H=00 99.8 pure; electrolytic. 1 23 Valention, M.V. and Lonameter, M.V. and Lonameter, M.V. and 1961 A 293-1473 H=00 99.8 pure; electrolytic. 1 23 23 197 1.9-20 Mill "machine electrolytic." 1097 state of 5 % atm ⁻¹ , restat- tivity value calculated from restored of 23 % atm ⁻¹ ; restat- tivity value calculated from restored of 23 % atm ⁻¹ ; restat- tivity value calculated from restored of 23 % atm ⁻¹ ; restat- tivity value calculated from restored of 23 % atm ⁻¹ ; restat- tivity value calculated from restored at a rate of 5 % atm ⁻¹ . 1733 % not coded at a rate of 5 % atm ⁻¹ . 1033 % not coded at a rate of 5 % atm ⁻¹ . 1033 % not coded at a rate of 5 % atm ⁻¹ . 16 141 Miltahaw, Y. 1939 V 78-1133 % and coded at a rate of 5 % atm ⁻¹ . 1033 % not coded at a rate of 5 % atm ⁻¹ . 1033 % not coded at a rate of 5 % atm ⁻¹ . 17 203 101 N 78-1133 % and coded at a rate of 5 % atm ⁻¹ . 1033 % not coded at a rate of 5 % atm ⁻¹ . 1033 % not coded at a rate of 5 % atm ⁻¹ . 1033 % not coded at a rate of 5 % atm ⁻¹ . 1033 % not code at a rate of 5 % atm ⁻¹ .	20	255	Borodovskala, L.N. and Lebedev, S.V.	1955	+	293,1726		Similar to the above except measured by heating the wire slowly in vacuum.
2 32 Verretion, N.Y. and biometry, N.Y. and biometry, N.Y. 39 39-14/3 9.0 9.8 pure: electrolytic. 3 31 Britch, A.C., et al. 196 1.9-20 M 11 "Pure", polycrystal in the form of far platers: from Johnson, Matchy buowle, D. 3 212 Britch, A.C., et al. 196 -1.2 M 1 "Britch, A.C., et al. 1967 -1.2 M 1 "Britch actor of far platers: from Johnson, Matchy buowle, D. 10(3) Factor. 10(4) Factor. 10(4) Factor. 10(4) Factor. 10(4) Factor 10(4) Factor. <t< td=""><td>11</td><td>256</td><td>Köster, W. and Gmöhling, W.</td><td>1951</td><td>÷</td><td>293</td><td></td><td>99.9 pure; Mond Nickel; vacuum melted in a high frequency oven; out- gassed; measured by compensation method.</td></t<>	11	256	Köster, W. and Gmöhling, W.	1951	÷	293		99.9 pure; Mond Nickel; vacuum melted in a high frequency oven; out- gassed; measured by compensation method.
73 212 Burlich, A.C., Martin, 1967 1.9-20 M 111 "ure", polygystal in the form of flat platee; from Johnson, Matthe River, D., River, Riv	72	257	Vedernikov, M.V. and Kolomoets, N.Y.	1961	×	295-1473	00-N	99.8 pure; electrolytíc.
74 212 Enritch, A.C., et al. 1967 4.2 Mt I Statiar to the above specimen except annealed at 1473 K and coded at a rate of 5 K min ⁻¹ . 75 212 Enritch, A.C., et al. 1967 4.2 Mt I A different specimen cut from the same stoch as the above; annealed at 1473 K and cooled at a rate of 5 K min ⁻¹ . 76 141 Shirakawa, Y. 1939 V 78-1123 0.02 F ₁ , 0.00 S, 0.00 S, 1, and 0.01 P and Mm each; electron 176. in the same stoch an diam and 3.95 can long. 76 141 Shirakawa, Y. 1939 V 78-1123 0.02 F ₁ , 0.00 S, 0.00 S, 1, and Mm each; electron 176. in the same stoch an diam and 3.95 can long. 77 203 Sudortsor, A.I. and 1956 A 1.2-4 Ntih specimen in the same stoch an in diam and 3.95 can long. 78 203 Sudortsor, A.I. and 1956 A 1.2-4 Ntich specimen in the same stoch and the sum exterest direction. 78 203 Sudortsor, A.I. and 1956 A 1.2-4 Ntich specimen in the same stoch and in the sa	73	212	Ehrlich, A.C., Huguenin, R., and Rivier, D.	1967		1.9-20	III FN	"Fure", polycrystal in the form of flat plates; from Johnson, Matthey and Co.; annealed at 1273 K; cooled at a rate of 3 K min ⁻¹ ; resistivity value calculated from reported $\rho(293 \text{ K})/\rho(T)$ ratio; $\rho(293 \text{ K}) = 6.93 \times 10^{-6} \Omega \text{ m}$.
7.3 212 Bnrlich, A.C., et al. 1967 4.2 Ni I A different specianen cut from the same stock as the above; anmealed at 1273 K and cooled at a rate of 5 K min ⁻¹ . 76 141 Shirahawa, Y. 1939 V 78–1123 0.02 Fe, 0.01 C, 0.003 S, 0.002 Si, and 0.001 P and the each; electronism constrained and cooled at a rate of 145 specianen in the seat-west direction shows and cool. 00606 cm in diam and 3.35 cm cooled at a rate of inclusi from the mean and cool colors. 71 203 Sudovteov, A.I. and 1956 A 1.2-4 Polycrystalline specianen in the form of this riboni from Hilgeri scannealed at 1123 K for 1 h in vacuum, with specianen dor collar measurement dor vib in seat-west direction. 71 203 Sudovteov, A.I. and 1956 A 1.2-4 Polycrystalline specianen in the form of this riboni from Hilgeri scannealed at 1123 K for 1 h in vacuum, with resistivity value calculation. 71 203 Sudovteov, A.I. and 1956 A 1.2-4 Polycrystalline specianen in the form of this riboni from Hilgeri scalculated to be 1.048 x 10 ⁻⁵ transtructures specianen descenter of the color in the measurement dor calculation with transitivity value calculation with resistivity value calculation with transitivity at 273 K taken to be 6.16 x 10 ⁻⁶ f. 703 Sementerko, I.E. A 14-20 The above specianen measured at hydrogen temperatures; specianen descenter in the castructed iffor to to fol (x 10 ⁻⁶ f.) traken to be 6.16 x 10 ⁻⁶ f.<	14	212	Ehrlich, A.C., et al.	1967		4.2	I IN	Similar to the above specimen except annealed at 1473 K and coded at a rate of 5 K min ⁻¹ .
76 141 Shirahawa, Y. 1939 V 78-1123 0.02 Fe, 0.01 C, 0.003 S, 0.002 Si, and 0.001 P and Mn each; electron in the east-vess in the ast-vess in the east-vess in the east-vest east-vest east-vest in the east-vest in the east-ves	5	212	Ehrlich, A.C., et al.	1967		4.2	N1 I	A different specimen cut from the same stock as the above; annealed at 1273 K and cooled at a rate of 5 K min ⁻¹ .
 Z03 Sudovtsov, A.I. and 1956 A 1.2-4 Peiyergatalline specimen in the form of this ribbon; from Hilger; Semeneako, E.E. Semeneako, E.E. R(4,2 K)/R(273 K) reported to be 1.0148 x 10⁻²; reeistivity value calculated from reported resistance ratio, with resistivity at 273 K taken to be 6.16 x 10⁻⁶ Ω m. R04 sover A.I. and 1962 A 14-20 The above specimen measured at hydrogen temperatures; specimen described at 99.94 pure; sealed in glass tube with helium gas; values calculated from reported from reported from reported in glass tube with helium gas; values (T)⁴ 2.38 × 10⁻⁶ Ω m. R04 sove, T.M. 1974 319-1042 99.99 pure; electrolytic; measured in a vacuum of ~10⁻⁶ mmlk. Peninov, R.I., and Indov, T.I., and Indov, A.I. 	76	141	Shirakava, Y.	1939	>	78-1123		0.02 Fe, 0.01 C, 0.003 S, 0.002 Si, and 0.001 P and Mn each; electro- lytic nickel from Monson and Co.; 0.0608 cm in diam and 3.95 cm long; annealed at 1273 K for 1 h in vacuum, with specimen in the east-west direction; slowly cooled; lead wire of nickel soldered by pure silver reannealed at 1123 K for 1 h in vacuum; slow cooled; measurement done with specimen in the east-west direction.
78 203 Sudovtsov, A.I. and 1962 A 14-20 The above specimen measured at hydrogen temperatures; specimen searched at 99.94 pure; sealed in glass tube with helium gas; values Semeneako, E.E. Galculated from reported R(T)/R(273 K) = 1.00986 x 10 ⁻² + 4.85 x 10 ⁻¹¹ T ⁵ ; with p(273 K) taken to be 6.16 x 10 ⁻⁶ Ωm. 2.88 x 10 ⁻⁶ T ² + 4.85 x 10 ⁻¹¹ T ⁵ ; with p(273 K) taken to be 6.16 x 10 ⁻⁶ Ωm. Muradov, T.I., and Instance American Substance Ame	"	203	Sudovtsov, A.I. and Semeneako, E.E.	1956	×	1.2-4		Polycrystalline specimen in the form of this ribbon; from Hilger; $R(4.2 \text{ K})/R(273 \text{ K})$ reported to be 1.0148 x 10 ⁻² ; resistivity value calculated from reported resistance ratio, with resistivity at 273 K taken to be 6.16 x 10 ⁻⁸ Ω m.
79* 258 Panakhov, T.M., 1974 339-1042 99.99 pure; electrolytic; measured in a vacuum of ∿10 ^{-*} maHg. Peninov, R.I., Muradov, T.I., and Ibragimov, A.I.	78	203	Sudovtsov, A.I. and Semeneako, E.E.	1962	<	14-20		The above specimen measured at hydrogen temperatures; specimen described at 99.94 pure; sealed in glass tube with helium gas; values calculated from reported $R(T)/R(273 \text{ K}) = 1.00986 \times 10^{-2} + 2.88 \times 10^{-6} \Omega \text{ m}$.
	*6/	258	Panakhov, T.M., Peninov, R.I., Muradov, T.I., and Ibragimov, A.I.	1974		339-1042		99.99 pure; electrolytic; measured in a vacuum of ${\rm vl0^-}^{\circ}$ mmHg.

والإنباط المتحد ماليفة فالمتعاقبة والأخراب فيعطهم ومعاملا متراجع والمستحد ومعالمه
Re	Anthone (a)	Year	Nethod	Temp.	Name and Specimen	Composition (weight percent), Specifications and Remarks
2			Used	Kange, K	Designation	
52	9 Tyagunov, C.V., Raum, B.A., shd Kushniv, M.N.	1972	æ	1573, 1973		99.98 pure.
1 191	9 Holborn, L.	1919		80-672		Wire spectaten 0.5 mm in diam; resistivity values calculated from reported R(T)/R(273 K), with $p(273 \text{ K})$ taken to be 6.16 x 10 ⁻⁸ Ω m.
ē.	8 Schimank, H.	1914	*	20-273		Wire specimen 1-2 m long; from Hartmann and Braun; resistivity value calculated from reported R(T)/R(273 K), with $p(273 K)$ taken to be 6.16 x 10 ⁻⁶ Ω m.
3 36	7 Güntherodt, H.J. and Künz1, H.U.	1973	υ	1726		99.998 pure; from Johnson, Matthey and Co.; in liquid state; tempera- ture = 1726 K assumed.
6* 26	0 Busch, G., Güntherodt, H.J., Künzi, H.U., Meier, H.A., and Schlapbach, L.	1970		1726		No details reported.
5 15	9 Baum, B.A., Tyagunov, C.V., Gel'd, P.V., and Khasin, C.A.	1671	æ	1573,1873		99.99 pure; zone refined; specimen contained in either an alumina or zirconia crucible; measured in an atmosphere of helium.
6* 19	Bubini, E., Esin, O.A., and Vatolin, N.A.	1969		1873		"High purity"; measured in purified helium.
*2	k Sewarin, A.M.	1962	22	1728-1900		Messured in an atmosphere of helium; rotating field apparatus calibrated against an iron specimen with resistivity value at welting taken from R.W. Powell, Philos. Mag. 44 , 772, 1953; resistivity value calculated from reported conductivity = (32.35 - 0.88 × 10 ⁻³ T(C)) × 10 ⁴ (ohm cm) ⁻¹ ; (this equation is apparently erroneous).
8* 2(il Schwerer, F.C. and Silcox, J.	1968		16.4-56.3		No details reported; $p(273 \text{ K})/p(4.2 \text{ K}) \sim 1400$; values of $p(T)-p(1.4 \text{ K})$ reported only.
9 23	0 Ahmad, H.M. and Grieg, D.	1974	4	10-873	Pure N1(I)	"Spec-pure" nickel from Johnson, Matthey and Co.; 0.5 mm in diam and 10 cm long; annealed in vacuum at 1223 K for 24 h; TC = 631 K; data below 260 K supplied by author; values from table.
5: 0	20 Ahmsd, H.M. and Crieg, D.	1974	×	10-260	Pure Ni([])	Similar to the above; data supplied by author.
1* 2	21 Zumsteg, F.C. and Parks, R.D.	1970	>	623-650		99.999 pure; 0.005 cm thick, 0.05 cm wide and 50 cm long; swaged; annealed 1-30 days in situ before measurement; sample mounted on fiberglass; resistivity values calculated from reported $R(T)/R(T_C)$ and $\rho(T_C)$ taken to be 28.70 x 10 ⁻⁸ Ω m.

(continued)
N1
NICKEL
õ
RESISTIVITY
ELECTRICAL
3HL
NO
INFORMATION
MEASUREMENT
TABLE 11.

e Be	Ref.	, Author (a)	Var	Method	Temp.	Name and	
X	ŝ			Used	Range, K	Designation	composition (weight percent), Specifications and Kemarks
92	87	Seydel, U. and Fucke, W.	1977	*	508-2989		99.99 pure; 0.0015 Fe, 0.0003 Cu, 0.0002 Si, 0.0001 Ag, Al and Ca each, and <0.0001 Cr, Mg, Mn, and Sn each (chemical analysis); measured by an exploding wire technique; measurement error 43 ; smoothed values from curve.
66	92 110	Güntherodt, H.J., Hauser, E., Künzi, H.U., and Müller, R. Müller, R.	1975 1976	+	1723-1843		99.999 pure, from Johnson, Matthey and Co.; measured with a potential method in which the sample material was enclosed in an alumina tube with four protrusions setting as current and potential contacts.
* 46	262	Yao, Y.D., Arajs, S., and Anderson, E.E.	1975	×	4-300		0.0010 Fe, 0.0007 Al, 0.0005 Si, 0.0002 Ca, Cu, and Mg each, and <0.0001 <u>Ag</u> and Mn; from Johnson, Matthey and Co., R(4.2 K)/R(298 K) = 3.3 x 10 ³ .
95*	209	Wycisk, W. and Feller-Kniepmeier, M.	1976	<	295-1390		99.999 pure, <0.0005 Si, 0.0003 Fe, <0.0001 Mg and Ag each, 0.00001 Co, and 0.00005 Ca, Cd, Cu and Pb each; 5 mm diam and 150 mm long rod from Gallard-Schlesinger Chemical Corp.; zone-refined 5 times in electron beam; rolled and drawn to 60 µm diam wire with diamond tools; electrolytically cleaned after each rolling and drawing with a 7X acetic acid and 23X perchloric acid solution; annealed 1/2 to 1 h at 573-673 K in a vacuum of <10 ⁷ Torr; flushed with helium; then slowly lowered over a liquid helium bath, with copper guard roof the eads of which are immersed in liquid helium; heated to 1073 K for 40 min; then 1273-1373 for 5 min and 1473 K for 1 min; potential leads knotted and sintered to wire specimen at the highest temperature; $p(4,2 K)$ reported to be 0.0027 x 10 [°] 0 m its a longitudinal magnetic field of 250 Ge; resistivity values calculated from reported R(50 K)/R(4.2 K) = 1923.
8	209	Wycisk, W. and Feller-Kniepmeler, M.	1976	×	1.5-4.2		Similar to the above, except $R(296 K)/R(4.2 K) = 1845$; resistivity values calculated from reported $\Delta R/R(4.2 K)$; measured wire a current density of $v3.5 \times 10^{\circ}$ A cm ⁻² , and in a magnetic field of 250 Oe.
*19	209	Wycisk, W. and Feller-Kniepmeler, M.	1976	¥	4.2		Similar to the above, except measured without a longitudinal magnetic field, resistivity value calculated from reported R(296 K)/R(4.2 K), with $\rho(296 \text{ K}) = 5.191 \times 10^{-8} \Omega$ m from data set 96.
+86	209	Wycisk, W. and Feller-Kniepmeier, M.	1976	¥	4.2		Similar to the above, except single crystal 5 mm in diam and 10 cm long.
# 66	209	Wycisk, W. and Feller-Kniepmeier, M.	1976	×	4.2		Similar to the above, except measured in a longitudinal magnetic field of 250 0e.
100	93	Kita, Y., Ohguchi, S., and Morita, Z.	1978		1654-1882		0.08 Co, 0.007 Fe, 0.005 Si, 0.0025 Cu, C. ³² Mg, 0.001 Al, and 0.0007 S; measured with a four probe method in which the electrodes are made of the same material as the specimen; measured in a vacuum of 10 ⁻¹ Torr; data points taken at temperatures in the sequence: 1770, 1788, 1796, 1814, 1840, 1857, 1869, 1882, 1867, 1852, 1836, 1817, 1799, 1791, 1767, 1748, 1711, 1692, 1772, and 1654 K; values corrected for
1	a hour	1- (1					thermal expansion; values from table supplied by authors.

• .

* Not shown in figure.

(10.1 (1) (1) (10.1. M)	F Set a	Ře.	Author (s)	Year	Method Used	Temp. Range,K	Name and Specimen Designation	Composition (weight percent), Specifications and Remarks
10 ¹⁰ 11 11 ¹⁰ <th1<sup>10</th1<sup>	101*	66	Kita, Y., Ohguchi, S., and Morita, Z.	1978	+	1648-1872		Same as the above; a second melt; temperature sequence: 1755, 178 1798, 1818, 1838, 1856, 1872, 1855, 1836, 1821, 1805, 1793, 1769, 1756, 1740, 1693, 1667, and 1648 K.
10 24 Jackawa, P.J. and Jold 393-673 99.999 pure (10 pm metallic fauorities); polycrystalline; anuadas: anuadas: fauodas: anuadas: fauodas: fauoda	102*	66	Kita, Y., et al.	1978	t	1720-1888		Same as the above; a third melt; temperature sequence: 1751, 1766 1782, 1800, 1811, 1826, 1844, 1865, 1888, 1873, 1857, 1841, 1823, 1808, 1795, 1781, 1765, 1741, and 1720 K.
104* 30. Sperifs, 1:1, and Markin, A.Y. 1916 - 31-813 Phycrystallite spectroscopic nickel supplied by the National Neural Markin, A.Y. Remain, A.Y., Amail, A.Y., Manil, A.Y., Manil, S.Y., and 1910 A 4.2 0.003 C, 0.0007 G, 0.0001 H, 0.0003 H and Fe sech, 0.0002 SI sech matrix, A.Y., and 105* 210 Mylli, T. 1910 A 4.2 0.0018 C, 0.0007 G, 0.0001 H, 0.0003 H and Fe sech, 0.0002 SI sech matrix, A.Y., and 0.0001 H, with a sech matrix of the matrix of the matrix of the matrix of the matrix of the matrix of	103	224	Jackson, P.J. and Saunders, N.H.	1968		293-673		99.999 pure (10 ppm metallic impurities); polycrystalline; anneale data from table supplied by N.H. Saunders.
105*210Fujii. T.1970A4.20.0000 K, 0.0000 K, 0.	104*	263	Sherif, I.I., Ibrahim, A.F., Chani Avad, A.A., Ammar, A.S., and Esmail, S.A.	1976	t	373-873		Polycrystalline spectroscopic nickel supplied by the National Resc Center, Cairo; either dumbell-shaped specimen with long ends about 3 cm long and 0.9 cm in diam or wire specimen of gauge length 2.5 measured by a four probe method in an over flushed with inert gas.
106*210Nulli, T.1970A4.20.0040 C, 0.0010 0, <0.0002 H, and 0.0001 N; metallic septementation reasoner and rate as a fraction to the forms of for 2 h at 1173 N; "hhat are reasoner earbon easily by volatization in vacuum vit reasoner earbon easily by volatization in vacuum vit reasoner earbon easily by volatization in vacuum vit reasoner earbon easily by volatization in vacuum vit reasone earbon easily by volatization in vacuum vit easone strated in vacuum vit a same to reasone earbon easily by volatization in vacuum vit easone strated in vacuum vit a same to reasone earbon easily by volatization in vacuum vit easone strated in vacuum vit i resistivity value calculated by the same method a grant of mile earbon vacuum va	105*	210	Fujii. I.	1970	×	4.2		0.0050 C, 0.0007 O, 0.0004 H, 0.0003 N and Fe each, 0.0002 S1 and each, and <0.0001 Ag, Al, Ca and Cu each; supplied by Johnson, Mat and Co.; carbon impurities determined by vacuum fusion method, nitrogen and oxygen impurities determined by vacuum fusion method high purity silicon; metallic impurities determined by the supplie 5 mm in diam and 20 mm long; annealed at 1273 K for 1 h; grain siz reported to be 9 grams cm ² ; resistivity value calculated frcm reported p(295 K)/p(4.2 K) with p(295 K) taken to be 7.004 x 10 ⁻⁸ f)
 107* 210 Fujii, T. 1970 A 4.2 Similar to the above except containing 0.0020 C, <0.0002 0. <0.1 and trace amount of N and 3 pass zone-refined in vacuum at 1 mm grain size 3-5 grain cm². 106* 210 Fujii, T. 1970 A 4.2 Similar to the above except containing 0.0010 C, <0.0002 0 and amounts of hydrogen and nitrogen and 5 pass zone-refined in vac 1 mm min⁻¹; grain size 4 grain cm². 109* 210 Fujii, T. 1970 A 4.2 Similar to the above except containing 0.0010 C, <0.0002 0 and amounts of hydrogen and nitrogen and 5 pass zone-refined in vac 1 mm min⁻¹; grain size 4 grain cm². 109* 210 Fujii, T. 1970 A 4.2 Similar to the above except oxygen content is reduced to 0.0001 	106 #	210	Pujii, T.	1970	<	4.2		0.0040 C, 0.0010 0, <0.0002 H, and 0.0001 N; metallic inpurities r determined; the above material after surface oxidation treatment t remove carbon in an air atmosphere for 2 h at 1173 K; "this treatment is aimed to remove carbon easily by volatization in vacuum, with a chemical reaction to the forms of CO or CO_2 from N10 in the process of molten containing excessive oxygen during zone meiting"; I pass of molten containing excessive oxygen during zone meiting"; I pass of molten to vacuum at 3 mm in ¹ ; 1.5 mm in diam and 50 mm lor made by diameter controlled operation in zone refining process; gaseous impurities determined by the methods given above; grain si 4 grains cm ⁻² ; resistivity value calculated by the same method as
 106* 210 Fujii, T. 1970 A 4.2 Similar to the above except containing 0.0010 C, <0.0002 0 and amounts of hydrogen and nitrogen and 5 pass zone-refined in vacciment in the amounts of hydrogen and nitrogen and 5 pass zone-refined in vacciment is reduced to 0.0001 1 mm min⁻¹; grain size 4 grain cm⁻². 109* 210 Fujii, T. 1970 A 4.2 Similar to the above except oxygen content is reduced to 0.0001 cm⁻¹; grain size 4 grain cm⁻¹; grain size 4 grain cm⁻². 	107*	210	Fujti, T.	1970	<	4.2		Similar to the above except containing 0.0020 C, <0.0002 0, <0.000 and trace amount of N and 3 pass zone-refined in vacuum at 1 mm mi grain size $3-5$ grain cm ⁻² .
109* 210 Fujii, T. 1970 A 4.2 Similar to the above except oxygen content is reduced to 0.0001 pass zone-refined in vacuum at 1 mm min ⁻¹ ; grain size 4 grain c	106*	210	P ujii, T.	1970	۲	4.2		Similar to the above except containing 0.0010 C, <0.0002 0 and tra amounts of hydrogen and nitrogen and 5 pass zone-refined in vacuum 1 mm min ⁻¹ ; grain size 4 grain cm ⁻² .
	#60]	210	Pujii, T.	1970	<	4.2		Similar to the above except oxygen content is reduced to 0.0001 ; l pass zone-refined in vacuum at 1 mm min ⁻¹ ; grain size 4 grain cm ⁻²

ĥ
NICKEL
OF
RESISTIVITY
ELECTRICAL
THE
NO
DATA
EXPERIMENTAL
12.
TABLE

.

[Temperature, T, K; Electrical Resistivity, $\rho,~10^{-8}~\Omega$ m]

-	٩	4	٩	т	٩	Т	Φ	Т	PT−P₀	H	٩
DATA	<u>ser 1</u>	DATA S	<u>ier 3</u>	DATA SET	f 4(cont.)	DATA SET 7	(cont.)*	DATA SET	10(cont.)*	DATA SET	12(cont.)
2.0	0.19	80	0.570	18.7	0.0592*	240	5.2	1.965	0.000108	3.24	0.329
2.4	0.19	90	0.600	20.2	0.0606	245	5.3	2.537	0.000188	3.89	0.333
3.0	0.20	8 6	0.776	20.5	0.0613*	260	6.1	2.560	0.000194	14.84	0.345
3.5	0.20	120	1.34	21.7	0.0631	279	6.7	3.056	0.000271	15.92	0.345*
4.2	0.22	141	1.72	22.3	0.0629*	298	7.6	3.131	0.000276	16.53	0.345
5.0	0.22	159	2.29	22.3	0.0636*	321	8.4	3.552	0.000362	16.97	0.345*
5.9	0.22	180	3.06	24.2	0.0661	329	8.8	3.587	0.000357	17.49	0.345*
7.9	0.22	201	3.63	24.4	0.0667*	363	10.4	3.974	0.000450	17.99	0.346
6.9	0.22	220	4.40	24.4	0.0692*	411	12.7	3.993	0.000448	19.42	0.346*
10.9	0.22	249	5.35	25.1	0.0684*	475	16.6	13.79	0.00470	20.24	0.346
13.2	0.24	272	6.31	27.4	0.0733	493	17.5	14.64	0.00520		
15.4	0.24	295	7.46	30.3	0.0793	508	18.8	15.54	0.00591	DATA SI	ST 13
17.3	0.24	304	7.84	30.3	0.0807	528	20.3	16.42	0.00658		1
18.5	0.24	375	11.29	32.6	0.0884	548	21.8	16.62	0.00691	373	11.9
21.1	0.24	429	13.97	35.2	0.0973	565	23.2	17.09	0.00711	473	18.3
22.8	0.26	458	15.88	4.6).8	0.1222	574	23.9	17.53	0.00749	573	25.2
24.8	0.26	480	17.03			579	24.2	17.93	0.00784	673	32.5
26.9	0.29	542	22.01	DATA S	ET 5	585	24.8	18.44	0.00832	773	47.5*
29.4	0.29	556	23.92			591	25.3	19.04	0.00887		
31.4	0.29	585	26.98	323.2	8.65	597	25.9	19.77	0.00961	DATA SI	ST 14
33.0	0.29	616	30.62	423.2	13.6	602	26.6	19.77	0.00965		
35.0	0.29	648	32.72	523.2	20.3	610	27.3			273	6.36
36.6	0.29	693.177	33.876	623.2	28.8	614	27.7			293	7.01
39.3	0.29	734	35.024			628	29.4			300	7.31
41.9	0.33			DATA S	ET 6	634	30.0	-	đ	400	11.65
44.7	0.40	DATA	SET 4			643	30.6			500	17.6
47.0	0.40			90	1.77			DATA S	ET 11	550	21.1
48.7	0.42	5.6	0.0523	194.7	4.59	DATA	SET 8*			600	25.25
50.7	0.44	6.0	0.0523	273	7.37			4.2	0.0095	627	28.15
53.9	0.44	7.5	0.0526	373	11.56	4.2	0.034	10	0.0115	650	29.9
56.6	0.51	8.1	0.0529					20	0.0195	700	32.0
59.2	0.51	10.2	0.0533	DATA SE	*/ L	DATA	SET 9	30	0.0385	800	35.45
62.8	0.54	10.2	0.0535*					40	0.0775	006	38.5
65.3	0.57	11.8	0.0544	74	0.4	4.2	1.18	20	0.1495	1000	41.25
67.3	0.58	12.1	0.0544*	84	0.6			60	0.2295	1100	43.8
69.9	0.62	13.5	0.0551	92	0.8			70	0.3695	1200	46.4
73.1	0.69	13.6	0.0555*	101	1.0	e		80	0.5495	1300	48.75
		14.2	0.0555*	118	1.3	1	0 d-Ld	90	0.7495	1400	50.95
DATA SI	12	14.5	0.0564	125	1.6			273	6.31	1550	54.25
		15.1	0.0564*	145	2.4	DATA	SET 10*				
293.2	6.8	16.3	0.0569*	173	3.0			DATA S	ET 12	DATA SI	<u>17 15</u>
413.2	16.0	16.3	0.0572	197	3.6	1.612	0.0000777	,			
		17.2	0.0585*	205	4.0	1.736	0.0000852	1.73	0.329	300	8.77
		10.7	0.0386	262	4.9	1.924	0.000105	2.50	0.329	327	10.42

* Not shown in figure.

136

TABLE 12. EXPERIMENTAL DATA IN THE ELECTRICAL RESISTIVITY OF NICKEL NI (continued)

والمعدد والمراجعة والمتحافظ والمراجع

a de la calcimie de la citer d'a cite

The second second second second second

North

ł

μ	p	1	D	Ţ	d	T	d	1	d	L	d
DATA SET	15(cont.)	DATA S	SET 19	DATA S	ET 25*	DATA SET 2	7(cont.)	DATA SI	2T 30	DATA SET	34(cont.)
576	12.55	293	10.1	293	7.90	579	24.2	384	11.9	5.5	0.0322
452	16.81	323	11.3	323	9.30	631	29.3	. 438	15.0	6.1	0.0323
519	21.10	423	16.3	373	11.50	647	29.1	493	18.0	6.9	0.032
558	24.39	523	22.8	423	14.16	555	35.3	551	22.6	7.7	0.0328
89 95	25.13	623	31.5	473	17.24	794	36.4	615	27.7	8.5	0.033
630	30.49			498	18.71	864	38.8	680	32.7	9.5	0.0335
680	33.00	DATA S	SET 20	523	20.70	666	42.3			10.4	0.0338
683	00.66			548	22.50	1053	44.4	DATA	SET 31	10.8	0.0342
766	35.46	293	7.1	573	24.70	1124	45.9			14.7	0.0363
803	36.76	323	8.3	598	27.19	1172	46.1	2.32	0.00329	17.9	0.0391
803	36.50	423	13.1	623	28.88			2.97	0.00339	105.6	1.15
86	39.06	523	19.4	648	30.51	DATA SI	5T 28	3.24	0.00346	115.1	1.36
5 5 5 5	40.49	623	28.3	673	31.84			3.83	0.00366	123.8	1.60*
1016	43.10	723	33.2	698	32.69	1152	50.3	4.36	0.00377	134.1	1.87
1018	43.10	823	36.4	723	33.63	1178	51.1	5.72	0.00417	179.1	3.17
		923	39.2	748	34.57	1209	51.6	7.31	0.00476	199.5	3.78
DATA	iet 16	1023	42.1	173	35.36	1236	51.5	9.12	0.00553	226.6	4.62
l	1	1123	44.7			1277	53.7	13.1	0.00780	252.2	5.41
1098	43.8	1223	47.5	DATA S	ET 26*	1305	54.6	14.1	0.00859		
1104	43.9	1323	49.8			1320	55.7			DATA SE	T 35
1115	44.2			293	8.08			DATA S	ET 32		
1124	44.6	DATA S	SET 21	323	9.36	DATA S.	ET 29			1163	48.1
1174	45.8			373	11.60		}	293	6.8*	1217	50.7
1183	46.0	298	7.50*	423	14.11	110	2.0	1073	44	1300	53.7
1235	47.0	1726	60	473	17.29	138	2.7	1273	67	1400	57.1
1241	47.1	1726	84	498	18.70	147	3.5			1454	59.2
				523	20.54	164	3.5	DATA	SET 33	1502	60.7
DATA S	ET 17	DATA S	ET 22	548	22.51	194	4.6			1560	61.8
1				573	24.74	203	4.8	4.2	0.022	1606	63.1
293	7.1	4.18	0.11	598	26.91	225	5.5	10.5	0.024	1641	63.7
323	8.3	80.5	0.676	623	29.18	256	6.6	11.8	0.025		
423	13.0	292	7.16	648	30.75	265	6.9	13.4	0.026	DATA SE	T 36
523	19.4			673	32.01	327	9.7	15.3	0.027		
623	28.0	DATA	SET 23*	869	32.70	363	10.8	16.8	0.029	891.2	39.1
723	32.8			723	33.23	395	13.0	18.6	0.030	947.2	43.0
823	36.1	4.18	0.0213	748	33.98	399	12.7	177.0	3.06	983.2	43.0
923	39.3	80.5	0.60			405	13.1	188.3	3.41	1077.2	47.8
1023	42.4	273	6.35	DATA S	ET 27	438	14.5	204.3	3.87	1174.2	52.3
1123	45.2	298	6.48			469	17.1	233.4	4.79	1273.2	54.0
				313	8.3	479	17.4	272.2	6.17	1378.2	57.1
DATA	SET 18	DATA S	SET 24	364	10.9	517	20.0	295.0	7.06	1475.2	61.2
				373	11.5	554	22.2	298.1	7.24	1574.2	64.1
373	10.6	4.2	0.37	411	13.0	559	22.8			1673.2	68.1
533	18.5	90	0.92	483	17.2	637	29.7	DATA	SET 34		
263	20.7	198	4.12	505	18.7	683	32.3			DATA SI	T 37
773	33.2	273	7.46*	535	20.7	721	33.4	4.2	0.0319		
						803	36.8	5.0	0.0321	73	0.6
* Not si	hown in figure.										

Ni (continued)
OF NICKEL
RESISTIVITY
ELECTRICAL
N THE
DATA O
EXPERIMENTAL
TABLE 12.

F	٩	ч	٩	Т	٩	T	σ	ł	PT-Po	1	٩
DATA SET	37(cont.)	DATA SET 3	8(cont.)*	DATA SET 3	9(cont.)*	DATA	SET 43	DATA SET	. 48(cont.)*	DATA SET	1(cont.)*
123	1.6	355.2	10.3	496	16.8	4.2	0.0347	1.67	0.00057	650	29.57
5	3.0	362.2	10.9	541	19.9	13.6	0.0391	7.96	0.00066	658 616	29.43
(77 (12)	1.6	0/C 77F	12.0	900	22.0	7-0T	0.0402	10.5	0.00173	C/0	30.05
323	8.0	388.5	12.7	613	26.3	24.3	0.0510	18.7	0.00512	002	31.84
676	10.1	395.9	13.0	636	28.3	28.0	0.0587	20.8	0.00682	716	32.04
423	12.4	432.9	15.4	665	29.5	33.7	0.0787	24.0	0.0103	721	32.67
673	15.0	484.7	18.7	701	30.9	38.9	0.101	41.5	0.0638	744	32.96
523	17.7	499.5	19.4	762	34.1	57.8	0.235	49.7	0.1128	768	34.19
573	21.5	543.9	23.0	822	36.4	67.3	0.325	79.3	0.6032	111	33.62
623	25.2	543.9	23.6			79.3	0.491			791	34.80
673	29.1	584.6	26.6	IVO	V SET 40	93.3	0.778			825	35.57
123	31.2	584.6	21.9			111	1.29	T	đ		
611	33.1	592.0	28.6	3.2	0.0104	136	1.76			DATA	SET 52
(70	24.95	7.410 2.41 7	1 00	DATA C	18r 614	1/1	0C.7	DATA SE	T 49	00	+676 0
C/0	0.UC	7.100	1.00	VIVO	11 11	196	47.C			2	-70/ 0
626	0.0C	0.000).10 2 10	ă	701 C	077	4.17	1013	54.6		1.5054
676	2.2	006.4	32.0	47 G	001.2	067	70.0	1456	61.3	C71	1.385 [#]
1023	C. 65	/14.1	9.55	86	2./03	2 062	/.14	1647	64.3	150	2.237*
10/3	40./	1.16/	94.9	[7]	3./48	293.2	1.22	1713	81.3	200	3.703
1123	41.9	780.70	36.2	148	4.866			1760	87.7	250	5.384
1173	43.2	821.4	37.1	173	6.049	DATA S.	ET 44	1997	92.3	300	7.237*
1223	44.4	851.0	38.1	198	7.352					400	11.814
1273	45.8	895.4	39.2	223	8.825	303.2	8.58	DATA SE	T 50*	200	17.704
1323	A . 04	9.32.4	40.4	847	/07.01				ł	600	22.24
6/61	48.4	962.0	41.4	273	12.005	DATA S	SET 45	811	7.8	630	28.862*
1423	49.3	1036.0	43.1	298	13.808				2	635	29.288*
1473	So. 3	1061.9	43.6	323	15.723	80	1.109	DATA S	ET 51*	650	30.142
1523	51.4	1113.7	44.7	348	17.946	273	7.663			8	32.237
1573	52.8	1154.4	45.2	373	20.207			375	10.05	800	35.637
1623	53.9	1176.6	46.1	398	22.514	DATA St	5T 46	388	11.08	006	38.676
1008	74.4	1209.9	40.0	423	25.025			419	13.12	1000	41.496
	400 *	7.0#21	41.4	011	000.12	7.667	۰.۷	424	12.20	0011	007.44
TO VIVA				6/4	30.404		:	475	15.50	0071	40.128
10	3 0	DATA SI	- 19-	979	13.33/	ATAU	SET 4/	489	17.23	0621	41.912
170 5		11		670	200,0C	c 7	775 0	515	19.09		ET 530
169.1		711			17.400	7.4		520	18.06	NIN	EL JJ
		#CT	0.1	5/5	47.127			548	21.56	ł	
102.8	7.4	ROZ	9. 5	598	46.243			560	21.39	11	0.554
185	0.0 0	240	5.0	623	49.722	F	01-D0	575	23.69	8	0.770
196.1	0.4	274	6.2	648	53.390			597	24.40	169	2.71
214.0	4 (2 (298	1.2	673	57.257	DATA	SET 48*	600	26.27	273	6.16
1.62	2.2	330	4.8	DATA	SET 42		25 120	625	27.50	373	10.35
281.2		375	10.3		100	4 17	0.00017	019	28.39	435	13.52
336.7	9.5	164	13.1	1.5	0.1044	5.86	0.00035	618	28.71	483.5	16.50
340.4	9.8	469	15.1	293.2	10.44	>> • • • •		, ,	4	526	19.40

* Not shown in figure.

138

F

TABLE 12. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF NICKEL N1 (continued)

1.900 6.110 7.470 12.350 13.494 18.913 0.024 1.0 7.3 7.3 7.3 7.3 7.3 7.3 11.9 11.9 25.6 25.6 25.6 38.8 38.8 38.0 38.0 1.908 7.242 9.456 9.456 112.323 112.402 114.653 114.653 114.653 114.653 114.653 114.653 114.653 23.730 23.730 -0.08 0.41 6.13 6.84 65# 35.2 \$63 *79 62* a 66 SET SET SET SET SET DATA DATA DATA DATA 76.1 191.3 229.6 274.30 274.30 363.50 468.5 DATA 4.2 100 200 200 500 500 500 500 500 500 800 800 800 91 173 193 274.4 293 367.7 65 77 272 292 657 568 Ś E 85.06 87.08 89.12 89.82 40.6 41.6 41.6 41.6 44.9 44.9 550.8 550.8 551.7 555.7 551.7 555.7 39.8 ٩ 5 60 ŝ SET SET SET DATA DATA DATA 970 1001 1021 1021 1042 1062 1162 1164 1164 11178 11267 11267 11267 11267 11267 11267 11360 11385 1408 993 1020 1020 1042 1083 11083 11168 11168 11168 11168 11168 11204 1239 12395 11305 11305 11305 11305 11305 11305 11305 11281 11606 11706 11606 11706 1 1728 1800 1873 1873 H 57 (cont.) 0.3122 8 SET DATA SET 27.85 37 39 43 60 60 70 70 70 70 70 70 53 84 64 55 519 558 646 628 646 646 672 672 DATA 998 1016 1040 1059 11077 11077 11178 11178 11177 11195 11195 11294 11294 11294 11294 11339 11339 11339 11339 1.052 1.177* 1.177* 1.1868 1.18566 1.18566 1.18566 1.18566 3.3394 4.1659 3.300 3.300 4.1658 5.094* 5.094* 5.094* 7.366* 7.346 7.346 7.346 7.346 0.2820 0.2821 0.2826 0.2837 0.2837 0.2837 0.2837 0.2872 0.2872 0.2913 0.2913 0.2913 DATA SET 55(cont. SET 57 a 48.1 55.6 55.2 55.2 57.8 57.8 60.3 62.7 83.5 83.5 83.5 84.5 85.6 86.1 56 SET DATA 1.74 6.6 8.0 9.2 12 16.6 19.1 22.3 100.2 105.7 113.5 113.5 113.4 113.4 154.2 154.2 154.2 154.2 154.2 182.0 191.4 191.4 191.4 255.4 255.4 255.4 255.4 255.4 300.0 3.0 DATA 1073 1173 1173 11773 11673 11673 11728 11728 11728 11728 11728 11728 11728 11728 11728 11728 11728 11728 11728 11728 11778 11778 11778 11778 11778 11779 11773 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 117 0.0299 0.0306 0.0310# 0.0311# 0.03114 0.0315 0.0316 0.0316 0.0316 0.0336 0.0336 0.0336 0.0336 0.03374 0.03374 0.03374 0.03374 0.03374 0.03376 0.033777 0.03557 0.005537 0.005537 0.005537 0.005537 0.005537 0.007556 0.007556 0.007556 0.007556 0.007556 0.007556 0.007557 0.007556 00 0.2310 0.3127 0.4036 0.5157 .6601* 0.5813* 0.7338 0.8178 0.9367 54(cont.)* **SET 55** 27.0 30.8 33.4 36.8 40.1 43.3 DATA DATA SET н DATA SET 53(cont.)* 43.51 44.75 1.1 4.0 8.0 12.7 18.7 a 54* SET 641.1 642.3 642.3 651.8 653.8 653.8 7734.8 785.0 785.0 785.0 785.0 785.0 785.0 785.0 785.0 785.0 785.0 785.0 785.0 1004.0 1016.0 11128.2 11128.2 11128.2 628.6 628.9 629.2 629.4 630.5 631.1 633.4 633.4 621.5 626.9 635.2 637.1 638.7 \$51.5 617.5 627.8 DATA 88888

Not shown in figure.

							والمعادية والمتلافة فتتركر والمتركم والمتركب				
۲	٩	H	٩	н	٥	н	٩	H	٩	T	a
DATA SET	66(cont.)	DATA SET	67(cont.)	DATA S	ET 69	DATA SET	6(cont.)	DATA SET	r 78(cont.)	DATA SET	1 84*
673	35.2*	160	2.50*	293	8,5*	373	11.35	18	0.0669	1726	85.1
683	36.0	180	3.10	1726	63	482	17.1*	20	0.0673		
969	37.1*	200	3.70*	i		562	21.9		105	DATA SE	1 85
104	37.4	220	4.38	DATA SI	<u>17 70</u>	596	22.6	DATA SE	- / / / /	1673	7 03
11	37.6*	240	5.10			621	27.3	000		1075	0.00
<u> </u>	38.2	260	5.95 435 2	97/1	04 0	523	4.82 20.14	255 195	C.4	C/01	07.4
747	38.)# 26. 64	790	5, /J#	1/20	c.18	740	29.1 "	105	14.2	DATA SFT	86*
64) 764	20.92		*05 X	DATA	KET 21	409 9999	11.7*	203	18.3	170 0100	8
166	40.04	340	9.45	UTUA		680	31.8	536	21.5	1873	125
22	39,5#	360	10.35*	293	7.61	702	32.7	583	24.0		
787	39.5*	380	11.35*			772	34.9	618	27.8	DATA SE	T 87*
795	40.2	400	12.40	DATA S	ET 72	873	38.6	662	29.2		
806	40.4*	420	13.50			996	41.2	695	30.9	1728	3.24
817	41.6*	440	14.65	295	8.4	1073	44.1	731	32.0	1800	3.25
855	43.0	460	15.90	432	16.0	1123	45.5	776	33.4	1900	3.26
861	43.3*	480	17.15*	568	25.7			865	36.7		
873	43.5*	200	18.50	969	35.8	DATA	SET 77	928	39.0		
902	44.5	520	20.25*	725	36.8			666	40.4	ч	PT-P1.4K
945	45.2	540	22.00*	881	42.2	1.23	0.0628	1042	42.0		
952	45.4*	560	24.10	1063	47.7	1.23	0.0629*			DATA	SET 88*
962	45.6*	580	26.30*	1273	54.3	1.30	0.0628*	DATA SET	80		
166	47.5	009	28.75	1473	0.80	1.40	0.0629		ţ	16.4	0.00521
1019	47.5#	620	31.25	1		1.28	1.0629F	5/01	22	19.5	0.00801
1036	48 0 *	640	32.75	TAG	A SET 73	1.62	0.0629#	6/61	8/	23.5	0.0123
1078	49.1	660	33.25			1.73	0.0629			28.3	0.0214
1089	49.4#	680	33.75	1.85	0.00308	2.01	0.0629*	DATA	SET 81	32.7	0.0325
1127	51.0	700	34.25	4.15	0.00346	2.20	0.0629	1		37.4	0.0497
1141	51.4*	720	34.75	14.1	0.00753	2.41	0.0629*	80.2	0166.0	41.6	0.0720
1165	51.3	740	35.25	20.1	0.01237	2.52	0.0629*	80.9	0.9666	46.3	0.102
1173	52.04	760	35.75			2.73	0.0630	1.94./	4.0486	51.8	0.147
1187	52.6*	780	36.25	ITAD	V SET 74	3.00	0.0630	3/3	7601.4	56.3	0.192
1200	8-25	008	36.75		2010 0	3.18	0.0630	+ 10C	0CU/.CT		
1121	5.50	820	57.75 27.75	cl. ⁴	0.040/		0.0630	0.1.0	70//07		
7771		040	c			70.0	0.000		400 400	ų	đ
0/21		998 098	38.25	ING	C/ 13S A	() · ·	0.0630	DAIA	221 07*		
12/3		098 0	20.00			40.0 0	-TCON-0		2020 1	ATAN	6T 00
1921		86	CZ. 60	4.10	1410.0	18.5	0.0031	20.2	07/7.1	DALA	DE1 07
1671	7.00		40, muu		76 83	40°7	0.0031	80.4	1.005	01	770 0
	.,	VIVO	SET 08"	NATA	11	5.4.5	0.0631	4.CY1	1101.4	07	0.044
NIN	261 0/			1		4.18	0.001	2/3.1	0022.0	0, 0	2160.0
ě		4.5	0.0116	8/	1.28		ot 110		5	2	0.0098
8 5	67°0	(67	10.1	0/T	4.02	VIVO	27 190	DAIA SI	CO 13	9 9	0 204
120	1.65#			()) ())	-02.1	71	0.0665	1726	87.1	2	0.625
140	2.05			323	9.14	16	0.0666	N		100	1.033

N1 (continued)

TABLE 12. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF NICKEL

1111日 11日日 11日日 11日日

140

* Not shown in figure.

and the second sec

TABLE 12. EXPERIMENTAL DATA ON THE ELECTRICAL RESISTIVITY OF NICKEL N1 (continued)

والمتحدما والمستحد والمتحد والمستحد والمستعاد

Ser.

H	þ	L	d	Ţ	φ	L	d	T	đ	T	p
DATA SET	. 89(cont.)	DATA SET	91(cont.)*	DATA SET	92(cont.)	DATA SET 94 (cont.)*	DATA SET	4(cont.)*	DATA SET 9	5(cont.)*
160	2.584	631.6	28.78	1496	57.1	74.1	0.30	271.2	6.35	875.2	26.360
200	3.784*	631.7	28.80	1589	59.4	76.6	0.30	276.2	6.35	897.0	26.728
202	1,001	0.100	20,02	5621	9.20	1 /0	0.20	2.107	7 31	7.CU6	016.02
	8.747*	1 263	28.85	67/1	07.0 86.6	04.1 86.6	0.94	205.0		071 7	01 010
576	10.54*	632.5	28.88	2176	86.1	89.1	0.61	301.3	7.63	940.6	27.647
433	12.52	632.7	28.91	2391	87.6	91.6	0.93		8 1 •	971.2	28.016
473	14.69*	633.2	28.94	2606	88.7*	94.1	0.61	DATA S	ET 95*	993.0	28.572
533	18.37*	633.7	28.97	2719	89.6*	99.2	0.93			1006.1	28.753
573	21.20*	634.3	29.00	2875	90°6*	102.9	0.93	294.8	5.161	1010.5	28.753
673	29.93*	634.8	29.05	2989	91.3	106.7	1.25	303.5	5.348	1019.2	28.940
	33.32" 36 0/	635.5 635 0	80.62	0 TATA 0	ст 03	111./	1.25	312.3	5.80P	102/.9	29.122
		636.3	20.14			120.5	1.57	1.926	5.898	1058.5	29.859
DAT	A SET 90	636.9	29.20	1723	57.0	124.3	1.24	338.5	6.267	1062.8	29.859
		637.7	29.23	1723	60.8	128.0	1.89	382.1	7.741	1089.0	30.228
10	0.0037	638.2	29.25	1724	79.6	129.3	1.89	390.8	7.741	1097.7	30.415
20	0.016	638.8	29.31	1733	83.4	134.3	1.89	399.5	8.110	1106.5	30.597
ຂ	0.036	639.5	29.34	1757	83.4	139.3	1.56	408.3	8.445	1115.2	30.597
40	0.0792	640.1	29.37	1779	83.5	I43.I	2.21	434.5	9.584	1115.2	30.965
93	0.2623	640.5	29.40	1782	83.5*	146.9	2.20	451.9	10.140	1132.6	30.965
80	0.5764	641.1	29.46	1812	83.6	153.2	2.20	456.3	10.509	1145.7	31.339
001	0.985	641.5	29.46	1843	83.7	160.7	2.20	478.1	11.615	1158.8	31.708
160	2.503	642.1	29.48			165.7	2.84	499.9	12.352	1180.6	31.889
200	3.683	642.8	29.54	DATA	SET 94*	169.5	2.84	521.7	13.458	1193.7	32.076
260	5.735	643.2	29.54			175.8	2.84	547.9	14.932	1198.1	32.258
		644.0	29.60	1.5	0.10	180.8	3.16	569.7	16.407	1206.8	32.258
DATA	SET 91*	644.7	29.66	8.7	0.10	183.3	3.16	587.2	17.326	1224.3	32.627
0		642.3	29.69	10.2	0.11	188.3	3.80	591.5	17.594	1241.7	32.627
6.220	21.13	6.040	29.14	14.6	0.11	193.3	3.80	9.262	17.694	1267.9	33.364
1.620	70.12	04/.4	11.67	23.1	0.12	1.141	3.80	600.5	17.881	17/0.1	53, 504
024.4 675.7	16.12	040.0	29.83 20.02	2.82	0.13	203.4	3.8U	0.4.0	18.003	1302.8	54-101 14 470
626 7	28 11	6.040	20.07 70.86	0.00	51.0	7 616	4.12	1.110	10 160	1.1251	15 075
626.9	28.17	649.6	29.89	8.85	0.16	217.2	4.76	635.2	19.538	1363.9	35.207
627.3	28.25	650.1	29.91	4.1.4	0.18	221.0	4.76	635.2	20.275	1390.1	35.576
627.7	28.31			44.1	0.20	226.0	4.76	643.9	20.643		
628.2	28.37	DATA 5	SET 92	45.9	0.21	232.2	4.75	670.1	21.199	DAT	A SET 96
628.8	28.42			50.2	0.30	236.0	5.40	687.5	21.936		
629.2	28.48	508	20.0*	52.7	0.30	239.8	5.40	709.4	22.487	1.51	0.002574
629.8	28.54	638	31.8*	55.2	0.30	243.5	5.39	7.35.5	22.855	1.79	0.002581
630.2	28.60	769	37.9*	59.0	0.30	247.3	5.72	761.7	23.592	1.93	0.002593
630.7	28,68	886	*6 .14	62.8	0.30	252.3	6.04	787.9	24.330	2.08	0.002600
631.0	28.71	1029	45.9*	65.3	0.30	256.1	6.03	814.1	24.698	2.20	0.002626*
631.2	28.74	1206	50.3	67.8	0.30	262.4	6.35	840.3	25.436	2.44	0.002638*
4°760	28.11	1345	53.5	70.3	0.30	266.1	6.35	857.1	25.991	2.64	0.00264/*

141

* Not shown in figure.

.

and any first state of the second s

Mrs. Str. M(cert.) Mrs. Str. M(cert.) Mrs. Str. M(cert.) Mrs. Str. M(cert.) $2, 0 = 0.000331$ 19.0 1.4 5.3 2.10 $1, 0 = 0.000331$ 19.0 1.4 5.3 2.10 $1, 0 = 0.000331$ 19.0 1.5 5.3 2.10 $1, 0 = 0.000331$ 19.0 1.5 5.3 2.10 $1, 0 = 0.000331$ 19.0 1.3 1.3 1.3 $1, 0 = 0.000314$ 19.0 1.3 1.3 1.3 $1, 0 = 0.000314$ 19.0 1.3 1.3 1.3 $1, 0 = 0.000314$ 19.0 1.3 1.3 1.3 $1, 0 = 0.000314$ 19.0 1.3 1.3 1.3 $1, 0 = 0.000314$ 19.0 1.3 1.3 1.3 $1, 2 = 0.000314$ 19.1 1.3 1.3 1.3 $1, 2 = 0.000314$ 19.1 1.3 1.3 1.3 $1, 2 = 0.000314$ 19.1 1.3 1.3 1.3 $1, 2 = 0.000314$ 10.1	MXA SFT MAXA SFT IOI (cont.) MXA SFT IOI (cont.)	<pre>IO1(cont.)* DATA SET 103(cont.)</pre>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J.* 0.0026/5 J.4 87.35 67.3 21.66 J.8 0.00213 17.9 87.45 97.3 11.6 J.8 0.00213 17.9 87.45 97.3 11.6 J.10 0.00213 17.9 87.45 97.3 11.6 J.11 0.00214 17.9 87.75 97.3 11.6 J.11 0.00214 17.9 87.3 97.3 11.6 J.11 0.00118 19.12 88.45 97.3 11.6 J.11 19.0 88.45 97.3 97.3 11.6 J.12 0.00013 19.2 88.45 97.3 97.3 97.3 J.11 87.4 98.45 96.5 77.0 97.3 96.5 77.3 J.12 0.00013 19.2 88.45 96.5 77.0 97.6 97.6 J.12 0.00013 19.2 88.45 96.5 77.0 97.6 J.12 0.00013	61.4 573 23.03
1.00 0.0003/3 1.00 0.0003/4 0.000	1.0 0.000733 1.35 0.75 0.10 1.10 0.000714 1.93 87.95 97.95 97.95 97.95 1.10 0.000714 1.99 87.95 97.95 97.95 97.95 1.10 0.000714 1.99 87.95 97.95 97.95 97.95 4.2 0.0001165 1121 80.05 97.1 11.16 4.2 0.0001185 1121 88.25 97.1 11.16 4.2 0.0001185 1121 88.45 98.45 98.75 9MX SET 99* 1133 88.45 98.45 98.75 91.11 9MX SET 109* 1135 1135 88.45 91.75 91.12 9MX SET 100* 1137 113.1 91.45 91.3 91.06 9MX SET 100 1171 1174 11.4 91.4 11.2 9MX SET 100 1171 11.4 91.4 11.2 11.45 9MX SET 100 1171 11.4 91.4 11.01 9MX SET 100 1171 91.4 91.6 11.2 9MX SET 100 1171 91.4 91.6 11.2 9MX SET 100 1171 91.4 10.013 11.2<	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.90 0.0027(1) 1160 87.5 DATA SET 92 DATA SET 100 DATA SET 10	52:58 State Stat
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	87.65 DATA SET 104*
4.11 0.00144 1.79 0.739 <	4.11 0.00014 1.79 0.73 0.24 $0.$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.2 0.003183 1211 88.2 522 17.19 4.2 0.003183 1335 88.45 517 24.25 4.1 0.003053 1335 88.45 517 24.25 4.1 0.003053 1335 88.45 710 31.101 MIA ser 0.815 88.45 710 31.26 MIA ser 1028 88.45 710 31.26 MIA ser 1028 871 32.26 31.26 MIA ser 102 91.15 91.15 31.26 MIA ser 102 91.15 91.15 51.26 MIA ser 100 1720 91.15 0.02333 0.0233 614 91.05 1720 91.15 91.15 0.0145 0.0233 111 61.2 1000 91.15 01.15 01.0234 01.05 <td>88.05 471 13.60</td>	88.05 471 13.60
4.2 0.001185 133 88.25 571 20.56 MIX SET 99* 133 88.45 571 20.56 MIX SET 99* 133 88.45 571 20.56 MIX SET 99* 133 88.45 713 21.01 MIX SET 99* 137 88.55 713 21.01 MIX SET 102* MIX SET 102* MIX SET 102* 913 33.06 MIX SET 102* 172 9.13 9.14 4.2 0.033 MIX SET 102* 173 9.14 4.2 0.033 913 32.06 MIX SET 102* 173 9.14 9.14 4.2 0.033 913 914 914 914 914 914 912 9106 912 9106 912	4.2 0.003185 188.15 88.25 571 20.56 MIX SET 99* 1835 88.45 66 26.73 MIX SET 99* 1835 88.45 66 26.73 MIX SET 99* 1835 88.45 610 26.73 MIX SET 99* 1835 88.45 710 31.01 MIX SET 99* MIX SET 102* 97.15 33.06 93.13 MIX SET 100 1720 87.15 97.15 33.06 MIX SET 100 1720 87.45 0.0333 33.06 MIX SET 100 1720 87.45 0.0344 98.15 MIX SET 100 1720 87.45 0.0345 97.15 64 9.65 97.15 174 87.45 0.0345 161 87.45 MIX SET 100 174.5 97.15 0.0445 171 87.45 MIX SET 100 4.2 0.0445 161 87.55 1701 87.2 0.0445 <td< td=""><td>88.2 522 17.19</td></td<>	88.2 522 17.19
MAT SET 96 1338 88.45 66 26.42 4.1 0.00333 1335 88.45 710 12.16 MAT SET 99 1335 88.45 713 23.56 MAT SET 99 1335 88.45 713 23.56 MAT SET 100 1741 87.2 30.56 MA SET 102 1741 87.2 0.0333 171 1741 7.2 0.0333 171 1912 97.4 4.2 0.0333 171 1912 97.4 4.2 0.0333 171 1912 97.4 4.2 0.0333 171 1912 97.5 MA SET 107* 0.015 171 97.5 100 88.15 MA SET 107* 171 97.5 101	DATA SET 99* 1339 88.45 7.12 2.7.1 4.2 0.003033 1875 88.45 713 28.76 MAT SET 99* 1875 88.45 713 28.76 MAT SET 99* 1875 88.45 713 28.76 MAT SET 90* 1875 88.45 713 33.06 MAT SET 100 1872 88.45 713 33.06 MAT SET 100 1720 87.15 131 33.06 MAT SET 100 1720 87.15 100 1720 87.15 MAT SET 100 1721 87.15 100 4.2 0.0333 653 97.35 1781 87.55 1006 4.2 0.045 711 61.12 1781 87.15 1006 4.2 0.045 716 87.25 1795 87.65 0.145 100 4.2 0.045 711 61.12 1795 88.05 0.145 101 4.2 0.045 <tr< td=""><td></td></tr<>	
Matrix Bits Bits <td>M.Y. SET 99. M.Y. SET 101 31.01 M.Y. SET 99. M.Y. SET 102 88.65 710 31.01 M.Y. SET 99. M.Y. SET 102 87.15 35.06 M.Y. SET 100 174 97.45 26.75 M.Y. SET 100 174 97.45 27.03 M.Y. SET 100 174 97.45 27.20 M.Y. SET 100 174 97.45 27.20 M.Y. SET 100 174 97.45 20.033 M.Y. SET 100 174 97.45 20.045 M.Y. SET 100 177.26 177.2 0.0145 M.Y. SET 100 177.25 170.2 4.2 0.0054 M.Y. SET 100 17.55 170.2 4.2 0.0045 M.Y. SET 100 17.55 180.3 4.2<</td> <td>12 12 12 12 12 12 12 12 12 12 12 12 12 1</td>	M.Y. SET 99. M.Y. SET 101 31.01 M.Y. SET 99. M.Y. SET 102 88.65 710 31.01 M.Y. SET 99. M.Y. SET 102 87.15 35.06 M.Y. SET 100 174 97.45 26.75 M.Y. SET 100 174 97.45 27.03 M.Y. SET 100 174 97.45 27.20 M.Y. SET 100 174 97.45 27.20 M.Y. SET 100 174 97.45 20.033 M.Y. SET 100 174 97.45 20.045 M.Y. SET 100 177.26 177.2 0.0145 M.Y. SET 100 177.25 170.2 4.2 0.0054 M.Y. SET 100 17.55 170.2 4.2 0.0045 M.Y. SET 100 17.55 180.3 4.2<	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.2 0.00303 185 66.5 770 31.01 MAX SET 99* MIX SET 10* MIX SET 10* MIX SET 10* 33.26 4.2 0.00336 MIX SET 10* 172 87.1 33.26 4.1 0.00336 MIX SET 10* 173 87.1 35.06 4.2 0.00336 174 87.4 4.2 0.0333 201 171 87.45 MIX SET 10* 173 87.45 210 173 87.45 MIX SET 10* 174 17.2 0.0133 211 87.55 179 87.55 MIX SET 10* 4.2 0.0153 211 87.55 179 87.55 MIX SET 10* 4.2 0.0153 211 87.55 179 87.55 MIX SET 10* 4.2 0.0153 211 87.55 190 88.2 MIX SET 10* 4.2 0.015 211 87.55 190 88.2 MIX SET 10* 4.2 0.015 211 87.55 190 88.2 MIX SET 10* 4.2 0.005	4.2 0.003033 1856 86.65 770 31.01 <u>MAA_SET 94</u> <u>MAA_SET 102*</u> <u>MAA_SET 102*</u> <u>MAA_SET 102*</u> 33.26 4.2 0.002368 <u>MAA_SET 102*</u> <u>MAA_SET 102*</u> 33.26 4.2 0.002368 1720 87.15 87.3 33.26 <u>MAA_SET 100</u> 1741 87.4 67.2 0.0233 <u>MAA_SET 100</u> 1741 87.4 6.7 0.0233 <u>MAA_SET 100</u> 1741 87.4 6.7 0.0233 <u>MAA_SET 100</u> 1741 87.4 6.7 0.0233 <u>MAA_SET 100</u> 1741 87.4 6.4 0.0145 <u>711 61.25 1786 87.4 0.0145 0.145 772 60.15 1786 87.4 0.0145 0.145 773 60.15 1786 87.4 0.0145 0.145 773 60.15 1786 87.5 0.0145 0.0145 773 60.15 1786 88.05 0.47.5 0.00384 773 87.125 180.05 0.4</u>	86.15 000 20174 88.17 718 28.76
DATA SET 99* DATA SET 102* 82.1 33.2.6 4.2 0.00336 17.2 8.1.5 35.0.6 MAX SET 100 17.4 97.1,4 17.4 17.4 DATA SET 100 17.3 97.4,5 MAX SET 102* MAX SET 102* DATA SET 100 17.4 97.1,4 17.2 0.0233 DATA SET 100 17.3 97.4,5 MAX SET 106* 0.0233 DATA SET 100 17.4 97.4,5 MAX SET 106* 0.0145 0.11 61.7 1706 97.6,5 MAX SET 106* 0.0145 0.11 61.2 1706 97.6,5 0.0145 0.0145 0.11 61.2 1706 97.2,5 0.0145 0.0145 0.11 61.2 1703 88.05 4.2 0.0145 0.11 61.2 91.1 100 91.2 4.2 0.0145 0.11 61.2 91.1 100 91.2 4.2 0.0145 0.11 91.2 100	DATA SET 99* 1872 88.65 821 33.26 4.2 0.002588 DATA SET 102* DATA SET 102* DATA SET 102* 4.2 0.002588 1720 87.15 35.06 54.1 0.012588 1720 87.15 35.06 54.2 0.002588 1720 87.15 55.06 54.1 100 1731 87.45 0.0233 54.2 99.65 1766 87.65 DATA SET 106* 711 61.2 1776 87.75 DATA SET 106* 7710 81.2 1766 87.65 DATA SET 106* 770 87.25 1795 88.05 DATA SET 107* 7710 87.25 1796 87.65 4.2 0.0145 7710 87.45 186.75 DATA SET 106* 4.2 0.00584 772 80.15 1766 88.2 4.2 0.00584 773 87.4 88.65 DATA SET 109* 4.2 0.00424 8	86.65 770 31.01
DMX SET 99* MIX SET 102* BI3 35.06 4.2 0.003588 172.0 97.15 0.17. SET 102* 0.17. SET 102* 654 99.85 1741 87.45 0.17. SET 100* 1741 87.45 614 97.05 173 97.45 0.12.2 0.013 1741 87.45 614 97.05 1795 97.15 0.013 1741 87.45 0.0233 719 97.05 1792 88.05 0.0145 97.05 1792 98.05 0.0145 7710 97.05 1792 88.05 0.0145 97.05 0.034 7710 97.55 1990 88.05 0.0145 97.25 0.0034 711 617.2 1000 88.05 0.0145 97.25 0.0034 711 617.2 1000 88.05 0.0145 97.25 0.0034 711 617.2 1000 88.05 0.0145 97.2 0.0034 711 6	MIA SET 199* MIA SET 102* MIA SET 102* MIA SET 105* 4.2 0.002588 27.15 87.15 0.02333 MIA SET 100 1731 87.4 4.2 0.02333 654 98.3 1751 87.4 4.2 0.02333 654 98.35 1755 87.5 MAT SET 106* 4.2 0.0145 710 87.25 1781 87.85 MAT SET 106* 4.2 0.0145 710 87.25 1770 87.25 1770 87.25 1771 87.4 4.2 0.0145 710 87.25 1772 89.05 MAT SET 107* 4.2 0.00584 710 87.25 1772 80.05 MAT SET 103* 4.2 0.00584 712 80.4 88.6 MAT SET 103* 4.2 0.00584 712 81.1 88.2 4.2 0.00584 4.2 0.00584 713 81.4 88.6 MAT SET 103* 4.2 0.00424 5.2 </td <td>88.85 821 33.26</td>	88.85 821 33.26
4.2 0.002389 DATA SET 102* DATA SET 102* 0.11 111 112 87.15 0.13 0.11 112 97.45 4.2 0.0233 0.11 112 97.45 4.2 0.0233 0.11 112 97.45 4.2 0.0233 0.11 112 97.55 1106 97.55 0.0233 0.11 97.55 1106 97.65 97.65 0.015 0.11 97.25 1176 97.65 4.2 0.0165 0.11 97.25 1178 87.95 4.2 0.0164 0.125 1178 87.95 1176 97.65 4.2 0.0165 0.125 1178 87.95 1176 97.65 4.2 0.0034 0.11 111 112 112 117 111 111 0.125 1128 1106 112 1107 112 0.125 1118 111 112 111 111 0.13 111 111 111 111 111 0.14 111 111 111 111 111 111 0.15 111 111 111 111 </td <td>4.2 0.002588 DMTA SET 102* DMTA SET 102* 27.0 87.15 87.4 4.2 0.02333 27.1 87.4 4.2 0.02333 27.1 87.4 4.2 0.02333 654 59.85 1765 87.7 4.2 0.0245 671 61.2 1765 87.7 4.2 0.0145 713 61.2 1781 87.65 4.2 0.0145 714 61.2 1782 87.85 4.2 0.0145 716 87.25 1782 87.85 4.2 0.0145 717 60.1* 1816 88.05 4.2 0.00584 717 60.1* 1811 88.2 4.2 0.00584 718 87.5 180.6 88.2 4.2 0.00424 717 80.1 88.6 DMTA SET 109* 4.2 0.00424 718 81.5 184.4 88.6 DMTA SET 109* 4.2 0.00424</td> <td>873 35.06</td>	4.2 0.002588 DMTA SET 102* DMTA SET 102* 27.0 87.15 87.4 4.2 0.02333 27.1 87.4 4.2 0.02333 27.1 87.4 4.2 0.02333 654 59.85 1765 87.7 4.2 0.0245 671 61.2 1765 87.7 4.2 0.0145 713 61.2 1781 87.65 4.2 0.0145 714 61.2 1782 87.85 4.2 0.0145 716 87.25 1782 87.85 4.2 0.0145 717 60.1* 1816 88.05 4.2 0.00584 717 60.1* 1811 88.2 4.2 0.00584 718 87.5 180.6 88.2 4.2 0.00424 717 80.1 88.6 DMTA SET 109* 4.2 0.00424 718 81.5 184.4 88.6 DMTA SET 109* 4.2 0.00424	873 35.06
Mix SET 100 173 97.15 Mix SET 106 1.2 0.0233 654 59.85 1765 97.75 burb SET 106* 1.2 0.0233 611 61.75 1765 97.75 burb SET 106* 1.2 0.0233 711 61.2 1786 97.65 97.65 burb SET 106* 1.2 0.0135 711 61.2 1792 89.76 burb SET 107* 4.2 0.0145 771 61.2 1792 89.75 burb SET 107* 4.2 0.0145 771 61.3 1191 89.2 4.2 0.0034 4.2 0.0034 791 87.55* 1180 89.2 4.2 0.0034 4.2 0.0034 793 87.5 1814 88.5 burb SET 107* 4.2 0.0034 793 81.1 81.2 181.4 88.5 burb SET 109* 4.2 0.0054 794 81.1 81.2 181.4 88.6 4.2 0.00	MAX SET LOW Part Low DATA SET 100 1731 87.4 6.2 0.0333 654 59.45 1755 87.5 DATA SET 106 711 61.2 1766 87.65 DATA SET 106* 711 61.2 1781 87.65 DATA SET 106* 711 61.2 1782 87.65 0.0145 0.0145 0.0145 711 61.2 1792 88.05 DATA SET 106* 7772 60.3* 1792 88.05 0.0145 0.0145 7772 60.3* 1800 88.2 4.2 0.0084 796 87.55* 1826 88.35 4.2 0.0084 817 87.95 1844 88.6 9.15 4.2 0.00424 818 87.9 86.9 9.15 4.2 0.00424 818 87.9 88.1 4.2<	SET 102* DATA SET 105+
MYA SET 100 1141 97.45 4.2 0.0233 654 59.85 1765 97.45 141 97.45 710 61.2 1781 97.45 DATA SET 106* 153 170 710 97.125 1792 97.85 4.2 0.0145 171 710 97.125 1792 98.05 DATA SET 106* 17.45 171 710 97.125 1792 98.05 DATA SET 107* 1.2 0.0145 772 97.125 1190 88.05 DATA SET 107* 1.2 0.0034 791 87.126* 1811 88.2 4.2 0.0034 793 87.136 1811 88.2 4.2 0.0034 791 87.55* 1823 88.15 4.2 0.0034 793 87.13 193 88.2 4.2 0.0036 814 87.6 1841 88.6 DATA SET 109* 2.2 0.0042 814 87.6	DATA SET 100 171 87.4 4.2 0.0233 654 59.85 1751 87.45 $b.7.4$ $b.7.2$ 0.0233 711 61.2 1765 87.65 $b.7.5$ $DATA SET 106^4$ 711 61.2 1765 87.65 $b.7.5$ $DATA SET 107^4$ 716 87.25 1791 87.05 1722 80.05 $b.7.6$ 770 87.25 1792 88.05 $DATA SET 107^4$ $a.2$ 0.0145 7712 60.3^4 1806 88.05 $DATA SET 108^4$ $a.2$ 0.00834 7712 60.3^4 1811 88.05 $A.7$ 0.0084 7712 60.3^4 181.3 88.35 $A.2$ 0.00834 791 87.55 182.6 88.35 $A.7$ 0.00544 81.4 87.95 184.1 88.6 $A.2$ 0.00424 81.4 87.95 184.1 88.6 $A.2$ 0.00424 82.5<	82 15 NATA 351 107
133 97.45 DATA SET 106* 654 59.85 1736 97.75 DATA SET 106* 711 61.25 1730 97.65 0.42 0.0145 711 61.25 1791 97.65 0.42 0.0145 710 91.25 1795 98.05 0.42 0.0145 710 91.25 1793 88.05 0.42 0.0145 710 91.25 1995 88.05 0.42 0.00834 710 91.25 1911 88.2 4.2 0.00834 714 81.56 188.1 88.6 0.42 0.0084 719 87.56 188.1 88.6 0.42 0.0034 719 87.56 188.6 98.35 0.42 0.00424 816 88.6 0.43 0.00424 0.00424 817 88.3 99.1 4.2 0.00424 818 89.45 0.00424 0.00424 819 89.5	171 87.45 DATA SET 106* 634 99.85 1755 87.75 DATA SET 106* 640 75 1765 87.75 DATA SET 106* 710 87.25 1732 87.85 4.2 0.0145 710 87.25 1793 88.05 4.2 0.0145 770 87.25 1709 88.05 4.2 0.0145 771 60.35 1806 88.05 4.2 0.0145 7712 60.35 1806 88.35 4.2 0.00834 791 87.55* 1806 88.35 4.2 0.00834 793 87.65 1811 88.2 4.2 0.00834 794 87.55* 180.6 88.35 4.2 0.00544 814 87.95 188.6 89.3 4.2 0.00424 813 87.65 187.5 89.45 0.00424 814 87.9 187.6 89.45 0.00424 81	
654 59.85 1765 87.7 DMTA SET 106* 692 60.75 1766 87.7 DMTA SET 106* 716 87.05 1792 88.05 MTA SET 107* 776 87.05 1792 88.05 MTA SET 107* 777 60.07 1781 87.05 4.2 0.045 778 87.05 1792 88.05 MTA SET 107* 177 778 87.05 1800 88.05 4.2 0.00834 779 87.155* 1806 88.25 MTA SET 109* 186 796 87.155* 1826 88.15 MTA SET 109* 100* 814 88.6 4.2 0.00584 100* 100* 817 87.1 88.15 4.2 0.00424 10* 818 87.2 98.15 4.2 0.00424 10* 818 88.15 88.15 4.2 0.00424 10* 818 88.15 99.1 4.2	654 59.85 1765 87.7 DATA SET 106* 692 60.75 1781 87.65 4.2 0.0145 741 87.05 1781 87.65 4.2 0.0145 748 87.05 1792 88.05 0.4145 4.2 0.0145 770 87.25 1792 88.05 0.414 81.05 0.0145 770 87.25* 1800 88.05 0.412 0.00834 791 87.55* 1811 88.2 4.2 0.00844 796 87.45 1811 88.2 4.2 0.00544 796 87.55* 1844 88.6 4.2 0.00544 814 87.9* 1827 88.8 0.00424 816 87.9* 1865 88.15 4.2 0.00424 817 87.9* 1867 88.8 0.00424 817 89.3 99.3 4.2 0.00424 818 89.45 0.00424	87.45
(62 (6).75 1766 87.65 42 0.0145 7/16 87.05 1792 87.05 1792 87.05 7/16 87.05 1792 87.05 1792 88.05 M/IA SET 107* 7/17 60.13* 1806 88.05 M/IA SET 107* 0.0834 7/17 60.13* 1806 88.2 42 0.00834 7/18 87.4 1806 88.2 42 0.00834 7/19 87.55* 1823 88.35 M/IA SET 108* 42 0.00834 7/19 87.55* 1823 88.35 M/IA SET 109* 42 0.0054 7/19 87.5 1824 88.65 42 0.0054 42 0.00424 7/10 87.1 88.15 9.1 42 0.00424 81 87.1 1877 88.45 42 0.00424 81 88.45 9.1 42 0.00424 42 0.00424	692 60.75 1766 87.65 4.2 0.0145 711 61.2 1792 88.05 88.05 97.25 1795 88.05 97.16 770 87.25 1795 88.05 96.05 97.42 0.0145 770 87.25 1795 88.05 96.05 97.42 0.00834 770 87.25 1800 88.05 97.42 0.00834 799 87.55 1802 88.35 97.1 97.9 794 87.55 1823 88.35 97.1 97.9 817 87.9 1826 88.35 97.1 97.9 817 87.9 186.5 88.6 97.1 97.2 840 88.1 1865 88.6 97.2 0.00424 857 88.3 98.1 4.2 0.00424 866 88.45 97.00 97.100 4.2 0.00424 867 88.45 97.103 4.2 0.	87.7 DATA SET 106*
M1 0.1.2 1/01 0.1.2 0.045 7/7 8.1.2 1/32 8.1.5 0.045 7/7 8.1.25 1/35 8.1.5 0.045 7/7 8.1.25 1/35 8.1.5 0.00834 7/7 8.1.5 1/35 8.1.5 0.00834 7/91 81.55 1811 88.2 4.2 0.00834 7/91 81.55 1811 88.2 4.2 0.00834 7/91 81.55 1841 88.6 0.0584 4.2 0.00584 814 81.6 8.15 0.1045 4.2 0.0054 814 81.6 8.15 0.1042 4.2 0.00424 816 86.1 184.5 8.16 4.2 0.00424 815 86.1 184.5 8.1 4.2 0.00424 816 86.1 184.5 9.1 4.2 0.00424 817 81.9 184.5 9.1 4.2 0.004	(1,1) $0,1,2$ $1,01$ $8/,05$ $4,2$ 0.0145 $7/7$ $8/,25$ 1792 $8/,05$ $DMTA$ SET $107*$ $7/7$ $8/,25$ 1792 $8/,05$ $DMTA$ SET $107*$ $7/7$ $60,3*$ 1900 88.05 $DMTA$ SET $108*$ $7/7$ $80,3*$ 1800 88.05 $4,2$ 0.0034 791 $87.55*$ 1800 88.2 $4,2$ 0.0034 791 $87.55*$ 1823 88.35 $4,2$ 0.0034 814 88.6 9.15 $4,2$ 0.0034 814 87.9 1865 88.5 $4,2$ 0.00424 814 88.6 9.1 $4,2$ 0.00424 817 81.9 89.3 $4,2$ 0.00424 818 88.1 88.6 9.1 $4,2$ 0.00424 819 88.3 89.3 $4,2$ 0.00424 88.6 819 88.4 89.3 $4,2$ 0.00424 88.6	87.65
7/7 8/1.25 1/72 8/1.35 B/1A. SET 1074 7/70 8/1.25 1795 88.05 DATA SET 1074 7/81 8/1.25 1900 88.05 0.14 1800 7/91 8/1.554 1800 88.15 0.00834 7/96 8/1.554 1811 88.2 4.2 0.00834 7/96 8/1.554 1823 88.35 DATA SET 1094 8/1 8/1.5 183.1 88.65 4.2 0.00584 8/1 8/1.8 88.65 4.2 0.00584 0.0424 8/1 8/1.8 88.65 4.2 0.00424 8/1 8/1.8 88.65 4.2 0.00424 8/2 88.15 9/1.4 4.2 0.00424 8/2 88.65 9/1.4 4.2 0.00424 8/2 88.65 9/1.4 4.2 0.00424 8/2 88.65 9/1.4 4.2 0.00424 8/2 88.65 9/1.4	770 87.25 1795 88.05 DATA SET 107* 770 87.25 1795 88.05 DATA SET 107* 772 60.3* 1800 88.05 4.2 0.00834 778 87.55 1800 88.23 4.2 0.00834 796 87.55* 1826 88.35 DATA SET 108* 799 87.55* 1826 88.35 DATA SET 108* 799 87.55* 1826 88.35 DATA SET 108* 814 87.95 1841 88.6 DATA SET 109* 817 87.9* 1844 88.6 DATA SET 109* 818 87.9* 1844 88.6 DATA SET 109* 816 88.1 4.2 0.00424 817 81.9 89.1 4.2 0.00424 818 89.3 9.1 4.2 0.00424 818 89.3 9.1 4.2 0.00424 82 88.3 9.1 4.2 0.00424	87.85 4.2 0.0145 8.8
770 87.25 1000 88.05 4.2 0.00834 772 60.34 1800 88.05 4.2 0.00834 796 87.55* 1826 88.35 2.4.2 0.00834 796 87.55* 1826 88.35 2.4.2 0.00834 817 87.9* 1826 88.5 4.2 0.00584 817 87.9* 1841 88.6 4.2 0.00584 817 87.9* 1857 88.6 4.2 0.00584 817 87.9* 1867 88.6 4.2 0.00584 817 87.9* 1865 88.45 0.00424 843 88.45 0.0424 4.2 0.0424 865 88.45 0.0424 4.2 0.0424 866 88.45 0.0424 4.2 0.0424 867 88.45 0.0424 4.2 0.0424 868 88.45 0.0424 4.2 0.0424 881 89.5 233 10.46 4.2 0.0424 882 88.45 0.456 0.4224 4.2 0.0424 883 88.45 0.456 0.4224 4.2 0.0424	770 87.2% 1800 88.05 4.2 0.00834 788 87.4 1811 88.2 4.2 0.00834 791 87.55* 1806 88.3 4.2 0.00834 796 87.55* 1826 88.35 4.2 0.00834 799 87.55* 1826 88.35 4.2 0.00584 817 87.9* 1851 88.6 4.2 0.00584 817 87.9* 1864 88.6 4.2 0.00424 817 87.9* 1865 88.6 A.1A SET 109* 817 87.9* 1865 88.6 A.1A SET 109* 818 89.1 1865 88.6 A.1A SET 109* 852 88.1 1867 88.6 A.2 0.00424 869 88.1 1973 99.1 4.2 0.00424 867 88.45* DATA SET 103 4.2 0.00424 867 88.45 DATA SET 109* 4.2 0.00424 882 88.65 293 7.00 323 4.2 0.00424 883 88.5 233 10.48 4.2 0.00424 867 88.5 233 7.00	80.05 DATA SET 1074
772 60.14 1806 88.2 4.2 0.0034 791 87.554 1811 88.2 4.2 0.0034 796 87.554 1823 88.35 <u>DATA SET 1084</u> 796 87.554 1823 88.35 <u>DATA SET 1084</u> 814 88.6 4.2 0.00584 814 88.6 4.2 0.00584 815 81.4 88.6 <u>DATA SET 1094</u> 816 87.94 1867 88.6 817 88.1 88.6 <u>DATA SET 1094</u> 816 88.1 1873 88.1 852 88.1 1873 89.1 4.2 0.00424 860 88.45 <u>DATA SET 1094</u> 4.2 0.00424 865 88.45 <u>DATA SET 103</u> 4.2 0.00424 866 88.45 <u>DATA SET 103</u> 4.2 0.00424 87 88.45 <u>DATA SET 103</u> 4.2 0.00424 88 0.043 10.403 10.403 10.403 88 233 10.403 13.004 13.004 648 60.35 473 15.86 531 603 531 13.004 531 5.86 <td>772 60.3* 1808 88.2 4.2 0.00834 791 87.55* 1811 88.2 4.2 0.00834 799 87.55* 1811 88.2 4.2 0.00834 799 87.55* 1826 88.6 4.2 0.00584 817 87.9* 1841 88.6 4.2 0.00584 817 87.9* 1857 88.6 4.2 0.00584 818 88.1 81.6 4.2 0.00584 817 87.9* 1857 88.6 0.01584 818 88.1 1854 88.6 0.0124 852 88.1 1865 88.1 4.2 0.00424 869 88.3 99.1 4.2 0.00424 869 88.3 99.1 4.2 0.00424 860 88.3 99.1 4.2 0.00424 860 88.6 99.1 4.2 0.00424 881 88.3 99.1 4.2 0.00424 882 88.45 97.00 92.2 92.2 883 88.65 222 93.2 92.2 884.5 60.8 523 10.008 648</td> <td></td>	772 60.3* 1808 88.2 4.2 0.00834 791 87.55* 1811 88.2 4.2 0.00834 799 87.55* 1811 88.2 4.2 0.00834 799 87.55* 1826 88.6 4.2 0.00584 817 87.9* 1841 88.6 4.2 0.00584 817 87.9* 1857 88.6 4.2 0.00584 818 88.1 81.6 4.2 0.00584 817 87.9* 1857 88.6 0.01584 818 88.1 1854 88.6 0.0124 852 88.1 1865 88.1 4.2 0.00424 869 88.3 99.1 4.2 0.00424 869 88.3 99.1 4.2 0.00424 860 88.3 99.1 4.2 0.00424 860 88.6 99.1 4.2 0.00424 881 88.3 99.1 4.2 0.00424 882 88.45 97.00 92.2 92.2 883 88.65 222 93.2 92.2 884.5 60.8 523 10.008 648	
(78) 87.4 1811 88.2 DATA SET 108* 796 87.55* 1823 88.35 DATA SET 108* 796 87.55* 1841 88.6 4.2 0.00584 814 87.65 1841 88.6 4.2 0.00584 817 87.9* 1844 88.6 4.2 0.00584 816 87.9* 1857 88.6 DATA SET 109* 89.3 816 87.1 1893 89.3 0.00584 9.1 4.2 0.00584 816 88.13 1863 89.3 9.1 4.2 0.00584 857 88.3 18.65 9.1 4.2 0.00424 869 88.45 DATA SET 103 4.2 0.00424 88.45 233 10.043 4.2 0.00424 88.45 233 10.043 4.2 0.00424 88.45 233 10.043 4.2 0.00424 88.45 233 10.48	788 87.4 1911 88.2 791 87.55* 1825 88.35 DATA SET 108* 799 87.55* 1825 88.35 0.00584 814 88.6 4.2 0.00584 817 87.9* 1857 88.6 4.2 0.00584 816 84.1 88.6 4.2 0.00584 817 87.9* 1857 88.65 4.2 0.00584 816 88.1 1863 88.65 4.2 0.00424 852 88.1 1873 89.1 4.2 0.00424 869 88.45 DATA SET 103 4.2 0.00424 860 88.45 DATA SET 103 4.2 0.00424 863 88.45 DATA SET 103 4.2 0.00424 863 88.45 DATA SET 103 4.2 0.00424 864 88.45 DATA SET 103 4.2 0.00424 865 88.45 DATA SET 103 4.2 0.00424 865 88.45 DATA SET 103 4.2 0.00424 865 88.65 233 7.00 323 4.2 0ATA SET 101* 373 10.48 4.2 0.00424 <td>88</td>	88
(7)1 87.55* 1823 88.35 DATA SET 108* (7)9 87.65 1841 88.6 4.2 0.00584 817 87.9* 1844 88.6 4.2 0.00584 816 81.6 4.2 0.00584 817 87.9* 1865 88.6 4.2 0.00584 816 88.6 4.2 0.00584 817 87.9* 1865 88.6 DATA SET 109* 840 88.1* 1865 89.3 99.1 4.2 0.00424 857 88.1* 1888 89.3 99.1 4.2 0.00424 867 88.45* DATA SET 103 4.2 0.00424 869 88.45* 293 7.00 882 88.65 293 7.00 882 88.65 293 7.00 882 88.65 293 7.00 883 60.15 4.7 10.48 648 60.15 4.7 10.48 648 60.15 4.7 10.48	(7)1 87.55* 1823 88.35 DATA SET 108* 796 87.55* 1826 88.35 4.2 0.00584 814 88.6 4.2 0.00584 815 1844 88.6 4.2 0.00584 816 81.1 1855 88.65 4.2 0.00584 816 81.1 1857 88.65 4.2 0.00584 816 88.1 1857 88.65 4.2 0.00584 816 88.1 1857 88.65 4.2 0.00424 857 88.3 99.1 4.2 0.00424 869 88.45* DATA SET 103 4.2 0.00424 865 88.45* DATA SET 103 4.2 0.00424 869 88.45* DATA SET 103 4.2 0.00424 869 88.45* DATA SET 103 4.2 0.00424 882 88.65 293 7.00 323 322 981 88.65 293 7.00 4.2 0.00424 986 88.65 293 7.00 4.2 0.00424 987 88.65 293 7.00 4.2 0.00424 981 98.65	88.2
796 87.55* 1826 88.35 4.2 0.00584 799 87.65 1841 88.6 4.2 0.00584 814 87.9 1857 88.6 4.2 0.00584 816 87.9 1857 88.6 4.2 0.00584 816 88.1 1857 88.6 DATA SET 109* 840 88.1 1865 89.3 4.2 0.00424 840 88.1 1866 89.3 4.2 0.00424 857 88.3 99.1 4.2 0.00424 867 88.45 DATA SET 103 4.2 0.00424 863 88.45 DATA SET 103 4.2 0.00424 882 88.45 233 7.00 4.2 10.48	796 87.55* 1826 88.35 4.2 0.00584 799 87.65 1841 88.6 4.2 0.00584 814 87.9* 1854 88.6 4.2 0.00584 815 81.1 1854 88.6 4.2 0.00584 816 87.9* 1857 88.6 4.2 0.00584 816 88.1 1857 88.6 4.2 0.00584 850 88.1 1897 88.6 4.2 0.00424 857 88.3 99.1 4.2 0.00424 857 88.3 99.3 4.2 0.00424 869 88.45* DATA SET 103 4.2 0.00424 869 88.45* DATA SET 103 4.2 0.00424 869 88.45 0.00 4.2 0.00424 869 88.45 0.00 4.2 10.00 860 88.45 10.00 4.2 10.00 871 101* 373 10.48 871 13.00* 423 13.00* 648 60.15 523 19.16 648 60.15 523 19.16	88.35 DATA SET 108*
7/99 87.05 1841 88.6 4.2 0.00384 81 87.8 1844 88.6 4.2 0.00384 81 87.8 1844 88.6 DATA SET 109* 85 88.1 1865 88.05 DATA SET 109* 85 88.1 1865 88.05 0.00424 85 88.1 1865 88.05 0.00424 85 88.3 9.1 4.2 0.00424 86 88.3 9.1 4.2 0.00424 86.5 88.45 293 7.00 88 86.5 293 7.00 88 84.5 293 7.00 88.6 293 7.00 88.6 293 7.00 88.6 9.10.48 9.10.48 9.12 0.11.4 10.48 0.12 4.7 10.14 10.48 10.15 4.7 10.16 521	7/99 5/.05 184.1 88.6 4.2 0.00584 81.4 87.9 185.4 88.6 4.2 0.00584 81.6 87.9 185.4 88.6 DATA SET 109* 83.6 88.1 1857 88.8 DATA SET 109* 840 88.1* 1865 88.65 9.1 4.2 0.00424 857 88.3 89.3 89.3 4.2 0.00424 857 88.5 233 7.00 822 323 822 869 88.45 27.00 822 37.00 648 60.15 4.73 10.48 0ATA SET 101* 373 10.48 27.00 4.22 0.00424 648 60.15 4.73 15.86 60.35 4.73 15.86 647 60.8 523 19.16 523 19.16 523	88.35
817 87.0 104 86.0 816 88.1* 1867 88.8 816 88.1* 1865 88.8 852 88.1* 1868 89.3 857 88.3 89.3 4.2 0.00424 857 88.3 89.3 4.2 0.00424 857 88.3 89.3 4.2 0.00424 867 88.45 DATA SET 103 4.2 0.00424 882 88.45 293 7.00 882 88.65 293 7.00 882 88.65 293 7.00 882 88.65 10.48 0.15 4.73 10.48 648 60.15 4.73 19.16 657 60.8 521 19.16	17 77.0 15.4 88.8 DATA SET 109* 836 88.1 1857 88.8 DATA SET 109* 840 88.1* 1865 88.65 80.5 857 88.3* 1866 89.3 4.2 0.00424 857 88.3* 1886 89.3 4.2 0.00424 857 88.5* DATA SET 103 4.2 0.00424 869 88.45 233 7.00 822 882 88.65 233 7.00 882 88.65 10.48 ATA SET 101* 373 15.86 648 60.35 523 19.16	88.6 4.2 0.00584
836 83.1 1865 88.05 0.00424 840 88.18 1873 89.1 4.2 0.00424 857 88.38 1888 89.3 4.2 0.00424 857 88.45 0.11 str.103 4.2 0.00424 866 88.45 0.11 str.103 4.2 0.00424 882 88.45 0.11 str.103 4.2 0.00424 882 88.45 293 7.00 8.22 987 88.45 293 7.00 882 88.45 10.48 0.13 4.73 10.48 648 60.15 4.73 19.16 651 523 19.16	836 88.1 1865 88.65 88.65 840 88.1 1865 88.65 88.65 852 88.3 1873 89.1 4.2 0.00424 857 88.3 1873 89.3 4.2 0.00424 867 88.45 DATA SET 103 89.3 4.2 0.00424 869 88.45 DATA SET 103 89.3 4.2 0.00424 882 88.45 DATA SET 103 4.2 0.00424 982 88.45 293 7.00 8.22 0ATA SET 101* 373 10.48 4.23 13.00* 648 60.35 4.73 15.86 60.8 667 60.8 523 19.16	20.0 28 2 DATA CET 100+
840 88.1* 1873 89.1 4.2 0.00424 857 88.3* 1888 89.3 4.2 0.00424 867 88.45 DATA SET 103 8.22 882 88.45 293 7.00 882 88.65 293 7.00 884 10.48 8.22 DATA SET 101* 373 10.48 648 60.35 473 13.00* 648 60.8 523 19.16	840 88.1* 1873 89.1 4.2 0.00424 852 88.3* 1888 89.3 4.2 0.00424 867 88.45 DATA SET 103 8.2 8.2 869 88.45 293 7.00 882 88.65 293 7.00 882 88.65 293 7.00 882 88.65 10.48 882 88.65 10.48 648 60.15 4.73 15.86 667 60.8 523 19.16	
852 88.3* 1888 89.3 1857 88.3 1888 89.3 1857 88.45 DATA SET 103 1869 88.45 DATA SET 103 1869 88.45 293 7.00 1862 88.45 293 7.00 1812 88.65 323 8.22 DATA SET 101* 373 10.48 648 60.15 4.73 13.00* 648 60.8 523 19.16	852 88.3* 1888 89.3 1857 88.3 1888 89.3 1867 88.45 DATA SET 103 1869 88.45 293 7.00 1882 88.45 293 7.00 1882 88.65 293 7.00 1882 88.65 1323 8.22 101* 373 10.48 648 60.15 473 15.86 667 60.8 523 19.16	89.1 4.2 0.00424
(B57) 88.45* DATA SET 103 (B67) 88.45* DATA SET 103 (B82) 88.45 293 7.00 (B82) 88.65 293 7.00 (B12) 88.65 293 7.00 (B12) 88.65 293 7.00 (B12) 323 8.22 (DATA SET 101* 373 10.48 (A13) 13.00* (648) 60.35 473 19.16 (657) 60.8 523 19.16	(B57) 88.3 DATA SET 103 8667 88.455 DATA SET 103 886 88.45 293 7.00 882 88.65 293 7.00 882 88.65 293 7.00 882 88.65 293 7.00 007A SET 101* 373 10.48 048 60.35 473 15.86 667 60.8 523 19.16	89.3
86/ 88.45* DATA SET 103 869 88.45 293 7.00 882 88.65 293 7.00 882 88.65 293 7.00 88.65 323 8.22 373 10.48 DATA SET 101* 373 10.48 423 13.00* 648 60.35 473 19.16 667 60.8 523 19.16	186/ 88.45* DATA SET 103 1869 88.45 293 7.00 1882 88.65 293 7.00 1882 88.65 293 7.00 1882 88.65 293 7.00 1914 373 10.48 423 1015 423 13.00* 423 1648 60.35 473 15.86 667 60.8 523 19.16	
380.9 88.45 293 7.00 1882 88.65 293 7.00 233 8.22 323 8.22 1014 373 10.48 423 648 60.35 473 15.86 667 60.8 523 19.16	380.9 88.45 293 7.00 382.88.65 293 7.00 ATA SET 101* 373 10.48 ATA SET 101* 373 10.48 648 60.35 473 13.00* 667 60.8 523 19.16	SET 103
382 88.05 293 7.00 DATA SET 101* 323 8.22 DATA SET 101* 373 10.48 648 60.35 473 15.86 667 60.8 523 19.16	382 88.65 293 7.00 DATA SET 101* 373 8.22 DATA SET 101* 373 10.48 648 60.35 473 13.00* 667 60.8 523 19.16	
DATA SET 101* 323 9.22 10.48 423 10.48 648 60.35 473 13.00* 1667 60.8 523 19.16	DATA SET 101* 37.2 0.42 10.48 37.3 10.48 1648 60.35 47.3 13.00* 1657 60.8 523 19.16	
648 60.35 423 13.00* 648 60.35 473 15.86 667 60.8 523 19.16	648 60.35 473 13.00* 648 60.35 473 15.86 667 60.8 523 19.16	10.12
648 60.35 473 15.86 667 60.8 523 19.16	648 60.35 473 15.86 667 60.8 523 19.16	
667 60.8 523 19.16	667 60.8 523 19.16	15.86
		19.16

4. ACKNOWLEDGMENTS

This work was supported by the Office of Standard Reference Data (OSRD) of the National Bureau of Standards (NBS), U.S. Department of Commerce. The extensive documentary activity essential to this work was supported by the Defense Logistics Agency (DLA) of the U.S. Department of Defense.

The authors wish to express their appreciation and gratitude to Dr. H. J. White, Jr. of the NBS Office of Standard Reference Data for his guidance, cooperation, and sympathetic understanding during the course of this work.

5. APPENDICES

5.1. Methods for the Measurement of Electrical Resistivity

At the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) of Purdue University, the experimental methods for the measurement of electrical resistivity have been classified into various categories according to a similar scheme used by CINDAS for the classification of methods for the measurement of thermal conductivity [264, pp. 13a-25a]. This classification scheme of CINDAS is presented below. Note that the letters in parentheses following the respective methods are the code letter used in the "Method Used" column of the Table of Measurement Information for indicating the experimental methods used by the various authors.

Methods for the Measurement of Electrical Resistivity

- A. Steady-State Methods
 - Voltmeter and ammeter direct reading method (V) [265, p. 159; 266, pp. 244-5]
 - 2. Direct-current potentiometer method (A) [267, pp. 151-8]
 - a. 4-probe potentiometer method
 - 3. Direct-current bridge methods (B) [267, pp. 144-51]
 - a. Kelvin double bridge method
 - b. Mueller bridge method
 - c. Wheatstone bridge method
 - 4. Van der Pauw method (P) [268, 269]
 - 5. Galvanometer amplifier method (G) [270, pp. 159-62]

B. Non-Steady-State Methods

- 1. Periodic current method
 - a. Direct connection to sample
 - (1) Alternating-current potentiometer method (C) [267, pp. 161-2]
 - (2) Alternating-current bridge method (D) [267, p. 162]
 - b. No connection to sample
 - (1) Mutual inductance method (M) [271]
 - (2) Self-inductance method (S) [272]
 - (3) Rotating field method (R) [273]

- 2. Non-periodic current method
 - a. Direct connection to sample
 - (1) Transient (subsecond) method (T) [154]
 - b. No connection to sample
 - (1) Eddy current decay method (E) [273; 267, p. 103]

5.2. Conversion Factors for the Units of Electrical Resistivity

The recommended values and experimental data for the electrical resistivity tabulated in this work are in the units: $10^{-8} \Omega m$. Conversion factors for the units of electrical resistivity, which may be used to convert the values given in $(10^{-8} \Omega m)$ to values in other units, are given below.

Units to be Converted to	Multiply the Value Given in (10 ⁻⁸ Ωm) by
ohm-meter (Ω m)	1×10^{-8}
ohm-centimeter (Ω cm)	1×10^{-6}
ohm-inch (Ω in.)	3.937×10^{-7}
ohm-foot (Ω ft)	3.281×10^{-8}
microohm-centimeter ($\mu\Omega$ cm)	1
abohm-centimeter (ab Ω cm)	1×10^{3}
statohm-centimeter (stat Ω cm)	1.113×10^{-18}
emu (= abΩ cm)	1×10^{3}
esu (= statΩ cm)	1.113×10^{-18}
ohm-circular mil per foot (Ω cmil ft ⁻¹)	6.015

Conversion Factors for the Units of Electrical Resistivity

Example: $1.000 \times 10^{-8} \Omega m = 3.937 \times 10^{-7} \Omega$ in..

6. REFERENCES

1.	Chi,	т.с.,	"Elect	crical	Resistivity	of	Alkali	Elements,"	Ј.	Phys.	Chem.
	Ref.	Data,	<u>8(2),</u>	339-43	38, 1979.						

- Chi, T.C., "Electrical Resistivity of Alkaline Earth Elements," J. Phys. Chem. Ref. Data, 8(2), 439-97, 1979.
- Matula, R.A., "Electrical Resistivity of Copper, Gold, Palladium, and Silver," J. Phys. Chem. Ref. Data, 8(4), 1147-298, 1979.
- Ho, C.Y., Powell, R.W., and Liley, P.E., "Thermal Conductivity of the Elements: A Comprehensive Review," J. Phys. Chem. Ref. Data, Vol. 3, Suppl. 1, 796 pp., 1974.
- 5. Matthiessen, A., "Electrical Resistivity of Alloys," Ann. Physik, <u>110</u>, 190-221, 1860.
- Matthiessen, A. and Vogt, C., "The Influence of Temperature on the Electrical Conductivity of Alloys," Ann. Physik, 122, 19-78, 1864.
- Bloch, F., "On the Quantum Mechanics of Electrons in a Crystalline Lattice,"
 Physik, 52, 555-600, 1928.
- 8. Bloch, F., "The Electrical Resistance Law at Low Temperatures," Z. Physik, <u>59</u>, 208-14, 1930.
- 9. Laubitz, M.J. and Matsumura, T., "Transport Properties of Chromium Through the Néel Point," Phys. Rev. Lett., 24(13), 727-30, 1970.
- Moore, J.P., Williams, R.K., and McElroy, D.L., "Physical Properties of Chromium from 77 to 400 K," in <u>Thermal Conductivity</u>, Proc. of the 7th <u>Conf.</u> (Flynn, D.R. and Peavy, B.A., Editors), NBS Spec. Publ. 302, 297-310, 1968.
- Meaden, G.T. and Sze, N.H., "Critical Exponents and Electrical Resistivity Near the Néel Point of Chromium," Phys. Lett., 29A(4), 162-3, 1969.
- Meadon, G.T., Rao, K.V., Lco, H.Y., and Sze, N.H., "Effect of the Spin Flip Transition on the Thermal and Electrical Resistivities of Chromium," J. Phys. Soc. Jpn., <u>27</u>, 1073, 1969.
- Meaden, G.T. and Sze, N.H., "Genesis of the Spin-Flip Resistivity Phenomena in Chromium," Phys. Lett., <u>30A(5)</u>, 294-5, 1969.

- Harper, A.F.A., Kemp, W.R.G., Klemens, P.G., Tainsh, R.J., and White, G.K., "The Thermal and Electrical Conductivity of Chromium at Low Temperatures," Philos. Mag., 2(17), 577-83, 1957.
- 15. Goff, J.F., "Lorenz Number of Chromium," Phys. Rev., B1(4), B51-62, 1970.
- 16. Goff, J.F., "The Thermal Conductivity of Chromium Above and Below the Néel Temperature - An Analysis," in <u>Thermal Conductivity, Proc. of the</u> <u>7th Conf.</u> (Flynn, D.R. and Peavy, B.A., Editors), NBS Spec. Publ. 302, 311-21, 1968.
- 17. Arajs, S., Colvin, R.V., and Marciakowskii, M.J., "Electrical Resistivity of a Chromium Single Crystal," J. Less Common Met., 4(1), 46-51, 1962.
- 18. Colvin, R.V. and Arajs, S., "Electrical Resistivity Measurement at Low Temperatures," in <u>Proceedings of the Black Hills Summer Conference on</u> <u>Transport Phenomena</u>, South Dakota School of Mines and Technology, Aug. 21-23, 1962. [AD 289 290]
- Arajs, S. and Dunmyre, G.R., "Electrical Resistivity and Transverse Magnetoresistivity of Chromium," J. Appl. Phys., <u>36</u>, 3555-9, 1965.
- Arajs, S., DeYoung, T.F., and Anderson, E.E., "Antiferromagnetism and Electrical Resistivity of Chromium Alloys Containing Ruthenium and Osmium," J. Appl. Phys., 41(3), 1426-8, 1970.
- White, G.K. and Woods, S.B., "Electrical and Thermal Resistivity of the Transition Elements at Low Temperatures," Phil. Trans. Roy. Soc. London, A251, 273-302, 1959.
- 22. Chiu, C.H., Jericho, M.H., and March, R.H., "Magnetic Susceptibility and Electrical Resistivity of Dilute Chromium-Titanium Alloys," Can. J. Phys., <u>49</u>(32), 3010-23, 1971.
- DeUries, G., "The Transition in Chromium and in Some Alloys of Chromium With Small Amounts of Other Transition Elements," J. Phys. Radium, <u>20</u>, 438-9, 1959.
- 24. Cox, J.E. and Lucke, W.H., "Thermoelectric Power and Electrical Resistivity of Chromium-Rich Cr-Fe Alloys Between 25 and 1000 C," J. Appl. Phys., <u>38</u>(10), 3851-5, 1967.
- Taylor, M.A., "The Electrical Resistivity of Dilute Solutions of Transition-Metals in Chromium," J. Less-Common Met., 4(5), 476-8, 1962.

- Mukeim, J. and Müller, J., "Specific Heat in Cr-Re System Antiferromagnetism and Superconductivity," Phys. Kond. Mater., <u>2</u>, 377, 1964.
- Suzuki, T., "Magnetic Properties of Primary Solid Solutions of Chromium," J. Phys. Soc. Jpn., <u>21</u>, 442, 1966.
- 28. Meaden, G.T., Rao, K.V., and Tee, K.T., "Effects of the Néel Transition on the Thermal and Electrical Resistivities of Cr and Cr:Mo Alloys," Phys. Rev. Lett., <u>25</u>(6), 359-62, 1970.
- 29. Suezaki, Y. and Mori, H., "Electrical Resistivity of Chromium in the Vicinity of the Néel Temperature," Phys. Lett., 28A, 70, 1969.
- Alexander, S., Helman, J.S., and Balberg, I., "Critical Behavior of the Electrical Resistivity in Magnetic Systems," Phys. Rev., <u>B13</u>(1), 304-15, 1976.
- 31. Rapp, Ö., Benediktsson, G., Åström, H.U., Arajs, S., and Rao, K.V., "Electrical Resistivity of Antiferromagnetic Chromium Near the Néel Temperature," Phys. Rev., B18(7), 3665-73, 1978.
- Ishikawa, Y., Ikeda, S., and Akiba, C., "Critical Phenomena of Chromium,"
 J. Phys. Soc. Jpn., 39(3), 823-4, 1975.
- Stebler, B., "Resistivity Anamoly in Chromium Near the Néel Temperature," Phys. Scr., 2(1-2), 53-6, 1970.
- 34. Moore, J.P., Williams, R.K., and Graves, R.S., "Thermal Conductivity, Electrical Resistivity and Seebeck Coefficient of High-Purity Chromium from 280 to 1000 K," J. Appl. Phys., 48(2), 610-7, 1977.
- 35. Matsumoto, T. and Mitsui, T., "Effect of Plastic Deformation on the Néel Temperature in Metallic Chromium," Phys. Lett., 27A(2), 107-8, 1968.
- 36. Anderson, J.N., Stewart, A.D., and Ramsay, I., "Recovery of Cold-Worked Chromium," Phys. Status Solidi A, <u>11</u>(2), 761-6, 1972.
- Trego, A.L. and Mackintosh, A.R., "Antiferromagnetism in Chromium Alloys.
 II. Transport Properties," Phys. Rev., <u>166</u>, 495, 1968.
- Mitsui, T. and Tomizuka, C.T., "Effect of Hydrostatic Pressure on the Néel Temperature in Chromium," Phys. Rev., <u>137</u>(2A), 564-5, 1965.
- 39. Arajs, S., "Electrical Resistivity of Chromium in the Neighborhood of the Spin-Flip Transition," Phys. Lett., <u>29A</u>(4), 211-2, 1969.

- Kostina, T.I., Ekonomova, L.N., and Konoorskii, I., "Influence of Magnetic Annealing on the Electrical Resistance of Chromium," JETP Lett., <u>12</u>(9), 295-6, 1970.
- Muir, W.B. and Ström-Olsen, J.O., "Electrical Resistance of Single Crystal Single Domain in Chromium from 77 to 325 K," Phys. Rev., <u>B4</u>(3), 988-91, 1971.
- 42. Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Desai, P.D., <u>Thermal</u> <u>Expansion-Metallic Elements and Alloys</u>, Vol. 12 of <u>Thermophysical Properties</u> <u>of Matter - The TPRC Data Series</u> (Touloukian, Y.S. and Ho, C.Y., Editors), IFI/Plenum Data Co., New York, NY, 1440 pp., 1975.
- Anderson, J.M., Stewart, A.D., and Ramsay, I., "High Temperature Resistivity Measurements on Chromium," Phys. Status Solidi, <u>37</u>, 325-8, 1970.
- Baum, B.A., Gel'd, P.V., and Suchil'nikov, S.I., "Electrical Conductivity in Chromium, Silicon, and Chromium Disilicide in Solid and Liquid Phases," Akad. Nauk SSSR, Izv. Metall. Gornoe Dero, 2, 149-55, 1964.
- 45. Baum, B.A., Gel'd, P.V., and Suchil'nikov, S.I., "Electrical Conductivity of Liquid Chromium Silicides," Fiz. Met. Metalloved., <u>16</u>(6), 939-41, 1963; Engl. transl.: Phys. Met. Metallogr., 16(6), 134-5, 1963.
- 46. Levin, E.S., Gel'd, P.V., and Aynshina, G.D., "Electrical Conductivity of Molten Chromium Aluminum Alloys," Izv. Vyssh. Ucheb. Zaved.-Tsvet. Met., <u>16(4)</u>, 123-6, 1973.
- 47. Powell, R.W. and Tye, R.P., "The Influence of Heat-Treatment on the Electrical Resistivity and the Thermal Conductivity of Electrodeposited Chromium," J. Inst. Metals, 85, 185-92, 1956-57.
- Grube, G. and Knabe, R., "Electrical Conductivity and Phase Diagram of Binary Alloys. The System Palladium-Chromium," Z. Electrochem., <u>42</u>(11), 793-804, 1936.
- McLennan, J.C. and Niven, C.D., "Electrical Conductivity at Low Temperatures," Philos. Mag., <u>4</u>, 386-404, 1927.
- 50. McLennan, J.C., Niven, C.D., and Wilhelm, J.O., "The Resistance of Cesium, Cobalt, and Chromium at Low Temperatures," Philos. Mag., 7(6), 672-7, 1928.
- 51. Potter, H.H., "Electrical Resistance and Thermoelectric Power of the Transition Metals," Proc. Phys. Soc., London, 53(6), 695-705, 1941.

- 52. deMorton, M.E., "Effect of Plastic Deformation on the Electrical Resistivity of Chromium," Nature, 181, 477-8, 1958.
- 53. Newmann, M.M. and Stevens, K.W.H., "Magnetic Susceptibilities of Iron-Chromium Alloys," Proc. Phys. Soc., London, 74, 290-6, 1959.
- 54. Sabine, T.M. and Svenson, A.C., "A Second Minimum in the Electrical Resistivity Versus Temperature Curve for Chromium," Phys. Lett., <u>28A</u>(6), 443, 1968.
- 55. Hamagachi, Y. and Kunitomi, N., "Antiferromagnetism in Disordered B.C.C. Cr-Mn Alloys," J. Phys. Soc. Jpn., <u>19</u>(10), 1849-56, 1964.
- 56. Pavars, I.A., Baum, B.A., and Gel'd, P.V., "Kinematic Viscosity and Electrical Resistance of Molten Iron-Chromium Alloys," Zhur. Fiz. Khim., <u>43</u>(11), 2744, 1969; Engl. transl.: Russ. J. Phys. Chem., <u>43</u>(11), 1542-5, 1969.
- 57. Levin, E.S., "Determination of Some Physico-Chemical Properties of Chromium-Aluminum Melts," Izv. Akad. Nauk SSSR, Met., <u>6</u>, 89-92, 1971; Engl. transl.: Russ. Metall., <u>6</u>, 67-70, 1971.
- 58. Fine, M.E., Greiner, E.S., and Ellis, W.C., "Transitions in Chromium," Trans. AIME, 189, 56, 1951.
- Barykin, B.M., Gordon, V.G., Levinov, B.M., Rekov, A.I., and Spiridonov,
 E.G., "Thermal and Electrical Conductivity of the Lanthanum Chromium Oxide Chromium Cermets," High Temp.-High Pressures, 6(1), 47-52, 1974.
- Söchtig, H., "Investigation of the Problem of Anomaly in Pure Chromium (Electrical and Thermal Resistivity, Thermopower, Heat of Transformation, Magnetic Susceptibility, and Crystal Structure)," Ann. Physik, <u>38</u>, 97-120, 1940.
- Meaden, G.T., Rao, K.V., and Loo, H.Y., "Lorenz Function Enhancement Due to Inelastic Processes Near the Néel Temperature of Chromium," Phys. Rev. Lett., 23(9), 475-7, 1969.
- 62. Moore, J.P., Williams, R.K., and McElroy, D.L., "Further Comments on the Transport Properties of Chromium," in <u>Thermal Conductivity-Proc. of the</u> <u>8th Conf.</u> (Ho, C.Y. and Taylor, R.E., Editors), P¹enum Press, New York, NY, 303-13, 1969.
- Marcinkowski, M.J. and Lipsitt, H.A., "Electrical Resistivity of Chromium in the Vicinity of the Néel Temperature," J. Appl. Phys., <u>32</u>(7), 1238-40, 1961.

- 64. Taylor, M.A. and Smith, C.H.L., "The Electrical Resistivity of Vanadium and Vanadium-Chromium Solid Solutions," Physica, 28(4), 453-60, 1962.
- 65. Zinov'ev, V.E., Krentsis, R.P., and Gel'd, P.V., "Thermal Diffusivity and Thermal Conductivity of Chromium at High Temperatures," Sov. Phys.-Solid State, <u>11</u>, 1623-5, 1969.
- 66. Maystrenko, L.G. and Polovov, V.M., "Calorimetric Investigation of Magnetic Phase Transition in Chromium Alloys," Fiz. Met. Metalloved., <u>45</u>(5), 991-7, 1977.
- 67. Akiba, C. and Mitsui, T., "Critical Exponent of the Anisotropic Electrical Resistivity in the Vicinity of the Néel Temperature of Chromium," J. Phys. Soc. Jpn., <u>32(5)</u>, 644-52, 1972.
- Semenenko, E. E. and Tutov, V.I., "Electrical Conductivity Anomalies in Antiferromagnetic Metals (Chromium and Praseodymium) from 0.3 to 300 K," Bull. Acad. Sci. USSR, Phys. Ser., 36(7), 1254-6, 1972.
- Borovik, E.S. and Volotskaya, V.G., "Investigation of Galvanomagnetic Phenomena in Chromium at Low Temperatures," Sov. Phys.-JETP, <u>9</u>, 1175, 1959.
- 70. McWhan, D.B. and Rice, T.M., "Pressure Dependence of the Itinerant Antiferromagnetism in Chromium," Phys. Rev. Lett., 19, 846, 1967.
- Bridgman, P.W., "Compressibilities and Pressure Coefficients of Resistance of Elements, Compounds, and Alloys, Many of Them Anomalous," Proc. Am. Acad. Arts Sci., 68, 27-93, 1933.
- Clinard, F.W., Jr. and Kempter, C.P., "Low-Temperature Electrical Properties of Some Transition Metals and Transition-Metal Carbides," J. Less-Common Met., 15, 59-73, 1968.
- Semenenko, E.E. and Tutov, V.I., "Influence of Magnetic Field on the Electrical Resistance Aluminum of Chromium," Phys. Met. Metallov., <u>27</u>(2), 148-51, 1969; Engl. transl.: Fiz. Met. Metalloved., 27(2), 343-4, 1969.
- 74. Semenenko, E.E., "Minimum in Electrical Resistivity of an Antiferromagnetic Metal (Cr)," Pis'ma Zh. Eksp. Teor. Fiz., <u>3</u>, 443-7, 1966; Engl. transl.: Sov. Phys.-JETP, 3(11), 291-3, 1966.
- 75. Marker, D.L., Reichardt, J.W., and Coleman, R.V., "Magnetoresistance in Cobalt Whiskers," J. Appl. Phys., 42(4), 1338-40, 1971.

- Laubitz, M.J. and Matsumura, T., "Transport Properties of the Ferromagnetic Metals. I. Cobalt," Can. J. Phys., 5181(12), 1247-56, 1973.
- 77. White, G.K. and Woods, S.B., "Low Temperature Resistivity of the Transition Elements: Cobalt, Tungsten, and Rhenium," Can. J. Phys., <u>35</u>(5), 656-65, 1957.
- 78. Kierspe, W., Kohlhaas, R., and Gonska, H., "The Specific Electrical Resistivity of Cobalt in Comparison to Iron and Nickel," Z. Angew. Phys., <u>24</u>(1), 28-32, 1967.
- 79. Owen, E.A. and Madoc Jones, D., "Effect of Grain Size on the Crystal Structure of Cobalt," Proc. Phys. Soc., London, <u>67B</u>, 456-66, 1954.
- Price, D.C. and Williams, G., "Two Current Conduction in Ferromagnetic Transition Metal Alloys: Sn in Fe, Co and Ni," J. Phys. F: Metal Phys., <u>3</u>(4), 810-24, 1973.
- 81. Semenenko, E.E., Sudovtsov, A.I., and Volkenshtein, N.V., "Temperature Dependence of the Electrical Resistance of Cobalt Between 1.3 and 4.2°K," Sov. Phys.-JETP, 18(4), 957-8, 1964.
- 82. Olsen-Bar, M., "Electronic Properties of Metals at Low Temperatures," Univ. of Caford, Thesis, 1956.
- Radhakrishna, P. and Nielsen, M., "Transport Properties of Cobalt at Low Temperatures," Phys. Status Solidi, 11(1), 111-5, 1965.
- Loegel, B. and Gautier, F., "Origin of Resistivity in Cobalt and Its Dilute Alloys," J. Phys. Chem. Solids, 32(12), 2723-35, 1971.
- 85. Powell, R.W., "Some Preliminary Measurements of the Thermal Conductivity and Electrical Resistivity of Cobalt," Cobalt, 24, 145-50, 1964.
- 86. Fraser, R.W., Evans, D.J.I., and Mackiw, V.N., "The Production and Properties of Ductile Cobalt Strip," Cobalt, 23, 72-81, 1964.
- Seydel, U. and Fucke, W., "Sub-Microsecond Pulse Heating Measurements of High Temperature Electrical Resistivity of the 3d-Transition Metals. Iron, Cobalt and Nickel," Z. Naturforsch., <u>32A(9)</u>, 994-1002, 1977.
- Eliutin, V.P., Turov, V.D., and Maurakh, M.A., "Change in Electrical Conductivity of 3d-Transition Metals on Melting," Izv. Vyssh. Ucheb. Zaved., Chern. Met., 1, 112-4, 1965.

- Ono, Y. and Yagi, T., "Electrical Resistivity of Molten Fe-Ni and Fe-Co Alloys," Trans. ISIJ, 12, 314-6, 1972.
- 90. Ono, Y., "The Determination of the Electrical Resistivity of Molten Iron Alloys," Kinzuko Batsuri Semina (Japan), 2(2), 113-8, 1977.
- 91. Levin, E.S., Ayushina, G.D., and Gel'd, P.V., "Isothermals (1650°C) of the Specific Electrical Resistance of Aluminum Melts with Iron, Cobalt, and Chromium," Izv. Vyssh. Ucheb. Zaved., Fiz., <u>15</u>(4), 139-41, 1972; Engl. transl.: Sov. Phys. J., <u>15</u>(4), 585-7, 1972.
- 92. Güntherodt, H.J., Hauser, E., Künzi, H.U., and Müller, R., "The Electrical Resistivity of Liquid Fe, Co, Ni and Pd," Phys. Lett., 54A, 291-2, 1975.
- 93. Kita, Y., Ohguchi, S., and Monita, Z., "Measurement of Electrical Resistivity of Molten Iron, Cobalt and Nickel by Improved Four-Probe Method," Tetsu to Hagane, <u>64</u>(6), 711-9, 1978.
- 94. Samarin, A.M., "Some Properties of Liquid Metals," J. Iron Steel Inst. (London), 200, 95-101, 1962.
- 95. Wilks, K.E., "Thermal Conductivity Measurements Between 77 K and 373 K on Iron, Cobalt, Aluminum, and Zinc," Purdue Univ., M.S. Thesis, 93 pp., 1968.
- 96. Cheremushkina, A.V. and Vasil'eva, R.P., "Temperature Dependence of the Hall and Nernst-Ettinghausen Effects in Cobalt," Sov. Phys.-Solid State, 8(3), 659-61, 1965.
- 97. Kovenskiy, I.I. and Samsonov, G.V., "Electrical Resistivity of Certain Transition Metals at High Temperatures," Phys. Met. Metallogr., <u>15</u>(6), 124-5, 1963.
- 98. Schröder, K. and Giannuzzi, A.J., "Thermoelectric Power and Resistivity of Nickel, Cobalt and Iron Near the Curie Temperature," Phys. Status Solidi, <u>34(2)</u>, 133-7, 1969.
- 99. Bennett, M.R. and Wright, J.G., "Amorphous Films of the Transition Elements," Phys. Status Solidi, 9, 13, 135-44, 1972.
- 100. Plewes, J.T. and Bachmann, K.J., "The Effect of Thermomechanical Pretreatment on the Allotropic Transformation in Cobalt," Metall. Trans., <u>4</u>(7), 1729-34, 1973.

- 101. Tsoukalas, I.A., "Temperature Dependence of the Hall Effect and Resistivity of Pure Cobalt," Phys. Status Solidi, 23(1), K41-4, 1974.
- 102. Meissner, W., "Measurements with the Aid of Liquid Helium. III. Resistance of Metals. Superconductivity of Tantalum. Contribution to the Explanation of Superconductivity. Specific Heat of Gaseous Helium," Physik. Z., <u>29</u>, 897-904, 1928.
- 103. Horak, J.A. and Blewitt, T.H., "Fast Neutron Irradiation Induced Resistivity in Metals," Phys. Status Solidi A, 9, 721-30, 1972.
- 104. Meissner, W. and Voigt, B., "Measurement with the Aid of Liquid Helium. XI. Resistance of Pure Metals at Low Temperatures," Ann. Physik, 7(7), 761-97, 892-936, 1930.
- 105. Jain, S.C., Narayan, V., and Goel, ".C., "Thermal Conductivity of Metals at High Temperatures by the Jain and Krishnan Method. II. Cobalt," Br. J. Appl. Phys., 2, 2(1), 101-7, 1969.
- 106. Kirichenko, P.I., "Thermal Conductivity and Electrical Resistivity of Certain Rhenium-Cobalt Alloys," High Temp., 7(4), 624-7, 1969; Engl. transl.: Teplofiz. Vys. Temp., 7(4), 682-6, 1967.
- 107. Zinov'yev, V.F., Krentsis, R.P., Perova, I.N., and Gel'd, P.V., "High Temperature Thermal Diffusivity and Conductivity of Cobalt," Fiz. Met. Metalloved., <u>26</u>, 60, 1968; Engl. transl.: Phys. Met. Metallogr., <u>26</u>(1), 57-63, 1968.
- 108. Schimank, H., "The Behavior of the Electrical Resistivity of Metals at Low Temperatures," Ann. Physik, 45, 706-36, 1914.
- 109. Thomas, J.G. and Mendoza, E., "The Electrical Resistance of Magnesium, Aluminium, Molybdenum, Cobalt and Tongsten at Low Temperatures," Philos. Mag., 43, 900-10, 1952.
- 110. Mueller, R., "Electronic Transport Properties of Transition Metals and Metal Alloys of Transition Metals in a Liquid and Amorphous State," Federal Polytechnic College, Zurich, Ph.D. Thesis, 46 pp., 1976.
- 111. Berger, L. and De Vrooman, A.R., "Influence of the Internal Field on the Residual Resistance of Very Pure Iron," J. Appl. Phys., 36, 2777, 1965.
- 112. Fujii, T. and Morimoto, I., "Residual Resistivity of High Purity Iron," Jpn. J. Appl. Phys., 8(9), 1154-8, 1969.

- 113. Volkenshtein, N.V. and Yakina, V.P., "Features of the Low Temperature Resistivity of Iron," Fiz. Met. Metalloved., 31(3), 773-80, 1971.
- 114. Takaki, S. and Igaki, K., "Electrical Resistivity of High-Purity Iron at 4.2 K," Trans. Jpn. Inst. Met., 17(6), 353-9, 1976.
- 115. Isshiki, M. and Igaki, K., "Temperature Dependence of the Electrical Resistivity of Pure Iron at Low Temperatures," Trans. Jpn. Inst. Met., 19(8), 431-7, 1978.
- 116. Glaeser, W., Ingrund, H., and Wever, H., "The Problem of Reproducible Permanent Resistivity Measurement in Highly Purified Iron," Phys. Status Solidi, <u>24</u>, K5-8, 1967.
- 117. Reed, W.A. and Fawcett, E., "High-Field Magnetoresistance of bcc Iron," Phys. Rev., <u>136(2A)</u>, A422-6, 1964.
- 118. Schindler, A.Z. and La Roy, B.C., "Residual Resistance Ratio of Pure Iron," J. Appl. Phys., 37, 3610-2, 1966.
- 119. Arajs, S., Oliver, B.F., and Michalak, J.T., "Effect of Grain Boundaries on the Electrical Resistivity of High Purity Iron at 4.2 K," J. Appl. Phys., 38, 1676-7, 1967.
- 120. Takamura, S., "Electrical Resistivity Measurements of Vanadium and Iron Deformed at 4.2 K," Phys. Soc. Jpn. J., 30, 1367-73, 1971.
- 121. Isin, A. and Coleman, R.V., "Magnetoresistance of Iron Whiskers," Phys. Rev., <u>137</u>, A1609-13, 1965.
- 122. Coleman, R.V. and Isin, A., "Magnetoresistance in Iron Single Crystals," J. Appl. Phys., <u>37</u>(3), 1028-9, 1966.
- 123. Taylor, G.R., Isin, A., and Coleman, R.V., "Resistivity of Iron as a Function of Temperature and Magnetization," Phys. Rev., 165, 621-31, 1968.
- 124. Beitchman, J.G., Trussel, C.W., and Coleman, R.V., "Electron Transport and Lorenz Number in Iron," Phys. Rev. Lett., 25(18), 1291-4, 1970.
- 125. Trussel, C.W., Christopher, J.E., and Coleman, R.V., "Resistivity of Iron from 0.3 to 4.2 K," J. Appl. Phys., 41(3), 1424-6, 1970.
- 126. Semenenko, E.E. and Sudovtsov, A.I., "Some Features in the Temperature Dependence of the Electrical Resistance of Ferromagnetic Metals at Low Temperatures," Sov. Phys.-JETP, 15(4), 708-10, 1962.

- 127. Fert, A. and Campbell, I.A., "Electrical Resistivity of Ferromagnetic Nickel + Iron Based Alloys," J. Phys. F: Metal Phys., 6(5), 849-71, 1976.
- 128. Janos, S., Kovac, L., and Mlynek, R., "Electrical Resistivity of Iron at 4-300 K as a Function of Temperature," Fyzikalny Casopis, <u>22</u>(1-2), 123-6, 1972.
- 129. Kondorskii, E.I., Galkina, O.S., and Chernikova, L.A., "Nature of Electrical Resistivity of the Ferromagnetic Metals at Low Temperatures," J. Appl. Phys., <u>29</u>(3), 243-6, 1958.
- 130. Kemp, W.R.G., Klemens, P.G., and White, G.K., "Thermal and Electric Conductivities of Iron, Nickel, Titanium, and Zirconium at Low Temperatures," Aust. J. Phys., <u>9</u>, 180-8, 1956.
- 131. Kemp, W.R.G., Klemens, P.G., and Tainish, R.J., "Thermal and Electrical Conductivities of Rhodium and Iron," Ann. Phys., 7, 5(1-2), 35-41, 1959.
- 132. Schwerer, F.C., Conroy, J.W., and Arajs, S., "Matthiessen's Rule and the Electrical Resistivity of Iron-Silicon Solid Solutions," J. Phys. Chem. Solids, 30(6), 1513-25, 1969.
- 133. Hust, J.G. and Giarratano, P.J., "Thermal Conductivity and Electrical Resistivity Standard Reference Materials: Electrolytic Iron SRM's 734 and 797 from 4 to 1000 K," Natl. Bur. Stand. Rept. NBS-SP-260-50, 41 pp., 1975.
- 134. Richter, F. and Kohlhaas, R., "The Thermal Conductivity of Pure Iron at the Curie Point," Z. Naturforsch., 19A(13), 1632-4, 1964.
- 135. Moore, J.P., McElroy, D.L., and Barisoni, M., "Thermal Conductivity Measurements between 78 and 340 K on Aluminum, Iron, Platinum and Tungsten," Proceedings of the Sixth Conference on Thermal Conductivity, Dayton, Ohio, Oct. 19-21, 1966, 737-78, 1966.
- 136. Fulkerson, W., Moore, J.P., and McElroy, D.L., "Comparison of the Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of a High Purity Iron and an Armco Iron to 1000 C," J. Appl. Phys., <u>37</u>(7), 2639-53, 1966.
- 137. Kohlhaas, R. and Richter, F., "Temperature Dependency of the Electrical Resistance of Pure Iron and Steel with Particular Reference to Phase Changes," Arch. Eisenhuettenwes., <u>33</u>(5), 291-9, 1962.

- 138. Dewar, J. and Fleming, J.A., "The Electrical Resistivity of Metals and Alloys at Temperatures Approaching the Absolute Zero," Philos. Mag., <u>36</u>(5), 271-99, 1893.
- 139. Moore, J.P., Fulkerson, W., and McElroy, D.L., "Comparison of the Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of a High Purity Iron and Armco Iron to 1000°C," USAEC Rept. ORNL-P-149, 20 pp., 1964.
- 140. Kornetzki, M., "On the Remanence of Magnetostriction of Polycrystal Iron and Nickel," Ann. Phys., 5, 203-19, 1943.
- 141. Shirakawa, Y., "On the Longitudinal Magneto-Resistance Effect at Various Temperatures in Iron-Nickel Alloys," Sci. Rept. Tohoku Imp. Univ., <u>27</u>, 485-527, 1939.
- 142. Matuyama, Y., "On the Magneto-Resistance of Bismuth, Nickel, Iron, Cobalt and Heusler Alloy by the Longitudinal Field at Low and High Temperatures," Sci. Rept. Tohoku Imp. Univ., 23, 537-88, 1934-35.
- 143. Wallace, D.G., Sidles, P.H., and Danielson, G.C., "Specific Heat of High Purity Iron by a Pulse Heating Method," J. Appl. Phys., 31, 168-76, 1960.
- 144. Pallister, P.R., "The Specific Heat and Resistivity of High Purity Iron Up to 1250 Degrees C," Iron and Steel Inst., J., <u>161</u>, 87-90, 1949.
- 145. Jaeger, F.M., Rosenbohm, E., and Zuithoff, A.J., "The Exact Measurement of the Specific Heat and Other Physical Properties of Solid Substances at High Temperatures," Rec. Trav. Chim., <u>57</u>, 1313-40, 1938.
- 146. Powell, R.W., Tye, R.P., and Woodman, M.J., "Some Electrical Resistivity Measurements on a Series of Iron-Chromium Alloys," Philos. Mag., <u>6</u>(67), 857-62, 1961.
- 147. Lauchbury, M.D. and Saunders, N.H., "Critical Behavior in the Transport Properties of Pure Iron," J. Phys. F: Metal Phys., 6(10), 1967-77, 1976.
- 148. Schwerer, F.C. and Cuddy, L.J., "Spin Disorder Scattering in Iron and Nickel Base Alloy," Phys. Rev. B, 3, 2(6), 1575-87, 1970.
- 149. Seehra, M.S., Capan, V.L., and Silinsky, P., "Electrical Resistivity Study of the Curie Temperatures of Fe Rich, Fe-Co Alloys," Phys. Status Solidi A, 26(2), K141-3, 1974.

- 150. Morris, D.K., "On the Magnetic Properties and Electrical Resistance of Iron as Dependent Upon Temperature," Philos. Mag., 5, <u>44</u>(268), 213-54, 1897.
- 151. Arajs, S. and Colvin, R.V., "Electrical Resistivity of High Purity Iron from 300 to 1300 Degrees K," Phys. Status Solidi, 6(3), 797-802, 1964.
- 152. American Institute of Physics Handbook, Third Edition, Section 5f: "Magnetic Properties of Materials," p. 5-144, 1972.
- 153. Bullock, G., "Thermal Changes in Steels as Shown by Resistivity," J. Iron and Steel Inst. (London), 183, 362-7, 1956.
- 154. Cezairliyan, A. and McClure, J.L., "Thermophysical Measurements on Iron Above 1500 K Using a Transient (Subsecond) Technique," J. Res. Natl. Bur. Stand., Sect. A, 78, 1-4, 1974.
- 155. Powell, R.W., "The Electrical Resistivity of Liquid Iron," Philos. Mag., 7, 44, 772-5, 1953.
- 156. Baum, B.A., Gel'd, P.V., and Tyagunov, G.V., "Resistivity of Ferrosilicon Alloys in the Temperature Range 800-1700°C," Fiz. Met. Metalloved., <u>24</u>(1), 181-4, 1967.
- 157. Arsentiev, P.P., Fillipov, S.I., and Litsitskii, B.S., "Electrical Conductivity of Iron and Iron-Carbon Melts," Izv. Vyssh. Ucheb. Zaved., Chern. Met., <u>3</u>, 18-22, 1970.
- 158. Mokrovskii, N.P. and Regel, A.R., "The Electrical Conductivity of Copper, Nickel, Cobalt, Iron and Manganese in the Solid and Liquid States," Zh. Tekh. Fiz., 23, 2121-5, 1953.
- 159. Baum, B.A., Tyagunov, G.U., Gel'd, D.V., and Khasin, G.A., "Viscosity and Electrical Resistance of Iron-Nickel Melts," Izv. Vyssh. Ucheb. Zaved., Chern. Met., <u>14</u>(10), 5-8, 1971.
- 160. Bass, J., "Deviations from Matthiessen's Rule," Adv. Phys., <u>21</u>(91), 431-604, 1972.
- 161. Broom, T., "The Effect of Temperature of Deformation on the Electrical Resistivity Cold-Worked Metals and Alloys," Proc. Phys. Soc., London, 65, 871-81, 1952.

- 162. Adrock, F. and Bristow, C.A., "Iron of High Purity," Proc. Roy. Soc. London, A153, 172-200, 1935.
- 163. Eucken, A. and Dittrich, K., "Zur Kenntnis das Wiedemann-Franzschen Gesetzes. II., Z. Phys. Chem., <u>125</u>, 211-28, 1927.
- 164. Grüneisen, E. and Goens, E., "Investigations on Metallic Crystal. V. Electrical and Thermal Conduction of Single and Poly Crystalline Metals of the Regular System," Z. Phys., <u>44</u>, 615-42, 1927.
- 165. Powell, R.W. and Tye, R.P., "New Measurements on Thermal Conductivity Reference Materials," Int. J. Heat Mass Transfer, 10(5), 581-96, 1967.
- 166. McDonald, W.J., Jr., "The Thermal and Electrical Conductivities of High Purity Iron at Low Temperatures," University of Texas, M.S. Thesis, 61 pp., 1962.
- 167. Bungardt, K. and Spyra, W., "Thermal Conductivity of Alloyed and Plain Steels and Alloys at Temperatures Between 20 and 700°," Arch. Eisenhuettenwes., <u>36(4)</u>, 257-67, 1965.
- 168. Böhm, R. and Wachtel, E., "Description of a Method for Measuring the Transport Coefficients of Metals and Alloys as a Function of Temperature According to the Kohlrausch Method," Z. Metallkd., <u>60(5)</u>, 505-12, 1969.
- 169. Bäcklund, N.G., "An Experimental Investigation of the Electrical and Thermal Conductivity of Iron and Some Dilute Iron Alloys at Temperatures Above 100 Degrees K," Phys. Chem. Solids, <u>20</u>(1/2), 1-16, 1961.
- 170. Cleaves, H.E. and Hiegel, J.M., "Properties of High-Purity Iron," J. Res. Natl. Bur. Stand., 28(5), 643-67, 1942.
- 171. Yoshida, I., "Electrical Resistivity of Pure Metals Below 1°K," Phys. Lett., <u>16</u>(1), 12-13, 1965.
- 172. Jaeger, W. and Diesselhorst, H., "Thermal Conductivity, Electrical Conductivity, Heat Capacity and Thermal Power of Some Metals," Wiss. Abhandl. Physik-Tech. Reichsanstalt, 3, 269-425, 1900.
- 173. Lorenz, L., "III Ueber das Leitungsuermögen der Metalle fur Wärme und Elektricitiät, Ann. Physik, <u>3</u>(13), 582-606, 1881.
- 174. Brown, H.M., "Effect of Magnetic Fields Upon the Thermal Conductivity of Iron, Copper, Gold, Silver, and Zinc," Phys. Rev., 32, 508-14, 1928.

- 175. Honda, K. and Simidu, T., "On the Thermal and Electrical Conductivities of Carbon Steels at High Temperatures," Sci. Rept. Tohoku Imp. Univ., <u>6</u>, 219-33, 1917.
- 176. Kondorskii, E.I. and Sedov, V.L., "The Change of Atomic Magnetic Moments in Ferromagnetic Metals Under Hydrostatic Compression," Sov. Phys.-JETP, <u>11</u>, 501-5, 1960.
- 177. Ibragimov, Sh.Sh., "Effect of Carbon on Variation of the Properties of Steels Under Neutron Bombardment," Phys. Met. Metallogr., <u>13</u>(5), 110-4, 1962.
- 178. Butler, E.H., Jr. and Pugh, E.M., "Galvano- and Thermomagnetic Phenomena in Iron and Nickel," Phys. Rev., 57, 916-21, 1940.
- 179. Niccolai, G., "Electrical Resistivity of Metals Between Very High and Very Low Temperatures," Z. Phys., 9, 367-72, 1908.
- 180. Wruck, D. and Wert, C., "The Role of Crystal Structure on Irradiation Effects in Metals," Acta Metall., 3(2), 115-20, 1955.
- 181. Rosenberg, H.M., "The Thermal Conductivity of Metals at Low Temperatures," Philos. Trans. R. Soc. London, <u>247</u>, 441-97, 1955.
- 182. Soffer, S., Dressen, J.A., and Pugh, E.M., "Hall Effects, Resistivity and Thermopower in Iron and Iron-Nickel Systems for x Equals 0 to 0.2," Phys. Rev., <u>140</u>(2A), 668-75, 1965.
- 183. Yoshikawa, A. and Okamoto, M., "Electrical Resistivity Study of Lattice Defects Introduced in Zone-Refined Iron by Deformation at -196 C," J. Phys. Soc. Jpn., <u>22</u>, 996-1004, 1967.
- 184. Takamura, S., Maeta, H., and Okuta, S., "Recovery of Fast Neutron Irradiated Iron at Low Temperatures," J. Phys. Soc. Jpn., 26, 1125-7, 1969.
- 185. Smith, A.W., Gregory, J.H., and Lynn, J.T., "The Electrical Resistance of Iron Wires and Permalloy Strips at Radio Frequencies," J. Appl. Phys., <u>17</u>, 33-6, 1946.
- 186. Zinov'ev, V.E., Abel'skii, Sh.Sh., Sandakova, M.I., Petrova, L.H., and Gel'd, P.V., "Matthiessen's Rule and High Temperature Electrical Resistivity of Solid Solutions of Silicon in Iron," Sov. Phys.-JETP, <u>36</u>, 1174-6, 1973.

187.	Güntherodt, H.J. and Künzi, H.U., "Hall Effect and Electrical Resistivity of Liquid Transition Metals," Phys. Kondens. Mater., <u>16</u> , 117-46, 1973.
188.	Tsoukalas, I.A., "Temperature Dependence of the Hall Effect and Resis- tivity of Pure Iron," Phys. Status Solidi A, <u>22</u> , K59-61, 1974.
189.	Kaufman, L., Clougherty, E.V., and Weiss, R.J., "The Lattice Stability of Metals - III. Iron," Acta Metall., <u>11</u> , 323-34, 1963.
190.	Arajs, S., Schwerer, F.C., and Fisher, R.M., "Residual Resistivities of Binary Iron Alloys," Phys. Status Solidi, <u>33</u> , 731-40, 1969.
191.	Meyer, A.R., "The Change in Electrical Resistivity of Pure Iron Between 0~1000°C," Verh. Deut. Phys. Ges., <u>13</u> , 680-92, 1911.
192.	Gumenyuk, V.S. and Lebedev, V.V., "Electric Conductivity of Iron at Ele- vated Temperatures," Phys. Met. Metalloved., <u>8</u> , 38-41, 1959.
193.	Dubinin, E., Esin, O.A., and Vatolin, N.A., "Electrical Resistivity of Liquid Pd-Ni, Pd-Co, Pd-Cu, Pd-Fe, Pd-Mn and Pd-Al Alloys," Russ. J. Phys. Chem., <u>43</u> (10), 1463-5, 1969.
194.	Lebedev, S.V., Savvatimskii, A.I., and Smirnov, Yu.B., "Exploding-Wire Measurement of the Heat of Fusion and Electrical Conductivity of Refrac- tory Metals," Zh. Tekh. Fiz., <u>42</u> (8), 1752-60, 1972; Engl. transl.: Sov. PhysTech. Phys., <u>17</u> (8), 1400-6, 1973.
195.	Tanaka, K. and Watanabe, T., "An Electrical Resistivity Study of Lattice Defects in Deformed Iron," Jpn. J. Appl. Phys., <u>11</u> (16), 1429-39, 1972.
196.	Wagenblast, H., Schwerer, F.C., and Horak, J.A., "Electrical Resistivity Increase Rates in Fe-C and Fe-N Solid Solutions During Neutron Irradi- ation at 4.5 K," Radiation Effects, <u>14</u> , 203-13, 1971.
197.	Vasil'eva, R.P. and Kadyrov, Ya., "The Anomalous Nernst-Ettingshausen Effect and Electrical Resistance in Iron-Cobalt Alloys," Fiz. Met. Metallov 39, 524-7, 1975.
198.	Holborn, L., "Über die Abhängigheit des Widestandes Reines Metalles von der Temperatur," Ann. Physik, <u>59</u> , 145, 1919.
199.	Potter, H.H., "The Electrical Resistance of Ferromagnets," Proc. Phys. Soc. London, <u>49</u> , 671-8, 1937.

۰,

- 200. Ribbeck, F., "The Dependence of the Electrical Resistivity of Nickel Steels on Composition, Temperature, and Heat Treatment," Z. Phys., <u>38</u>, 772-87, 1926.
- 201. Bhagat, S.M., Anderson, J.R., and Wu, N., "Influence of the Anomalous Skin Effect on the Ferromagnetic-Resonance Linewidth in Iron," Phys. Rev., <u>155</u>, 510-3, 1967.
- 202. Mannevy-Tassy, G., "Refinements and New Results on the Variation With Temperature of the Electrical Resistance of Ferromagnetic Materials," C. R. Hebd. Seances Acad. Sci., <u>230</u>(12), 1150-2, 1950.
- 203. Sudovtsov, A.I. and Semenenko, E.E., "Peculiarities of the Temperature Dependence of the Electrical Resistance of Ferromagnetic Metals at Low Temperatures," J. Exptl. Theoret. Phys. (USSR), 31, 525-6, 1956.
- 204. Semenenko, E.E., Sudovtsov, A.I., and Shvets, A.D., "Temperature Dependence of the Electrical Resistance of Iron in the Range 0.38-4.2 K," Sov. Phys.-JETP, <u>15</u>, 1033-4, 1962.
- 205. Swartz, J.C. and Cuddy, L.J., "Electrical Resistivities of Fe(C) and Fe(N) Solutions Between 4 and 1300 K," J. Phys. Chem. Solids, 32, 685-95, 1970.
- 206. Holder, T.K., "Thermal Conductivity, Electrical Resistivity and Seebeck Coefficient of High Purity Iron and Selected Iron Alloys from 90 K to 400 K," Tennessee Tech. Univ., M.S. Thesis, 99 pp., 1977.
- 207. Ershov, G.S., Kasatkin, A.A., and Gavrilin, I.V., "Electrical Resistivity of Liquid Iron With Various Additions," Izv. Akad. Nauk SSSR, Met., 2, 98-100, 1976; Engl. transl.: Russ. Met. (Metally), 2, 75-7, 1976.
- 208. Kohlhaas, R. and Kierspe, W., "The Thermal Conductivity of Pure Iron and Some Ferritic and Austenitic Steels Between the Temperature of Liquid Air and Room Temperature," Arch. Eisenhuettenwes., 36(4), 301-9, 1965.
- 209. Wycisk, W. and Feller-Kniepmeier, M., "Quenching Experiments on High-Purity Nickel," Phys. Status Solidi A, 37(1), 183-91, 1976.
- 210. Fujii, T., "Residual Resistivity of High Purity Nickel," Trans. Natl. Res. Inst. Metals, 12(3), 7-11, 1970.
- 211. White, G.K. and Tainsh, R.J., "Electron Scattering in Nickel at Low Temperatures," Phys. Rev. Lett., <u>19</u>(4), 165-6, 1967.

- 212. Ehrlich, A.C., Huguenin, R., and Rivier, D., "Experiments on the Magnetoresistivity and Hall Effect in Ni and Ni Alloys. The Validity of Kohler's Rule," J. Phys. Chem. Solids, 28, 253-60, 1967.
- 213. Ehrlich, A.C. and Rivier, D., "Hall Effect, Magnetor-sistance, Resistivity and Size Effect in Nickel," J. Phys. Chem. Solids, <u>29</u>(8), 1293-304, 1968.
- 214. Greig, D. and Harrison, J.P., "The Low Temperature Electrical Transport Properties of Nickel and Dilute Nickel-Copper Alloys," Philos. Mag., <u>12</u>, 71-9, 1965.
- 215. Fert, A. and Campbell, I.A., "Two-Current Conduction in Nickel," Phys. Rev. Lett., <u>21</u>(16), 1190-2, 1968.
- 216. Farrell, T. and Greig, D., "The Electrical Resistivity of Nickel and Its Alloys," J. Phys. C, 2, <u>1</u>(5), 1359-69, 1968.
- 217. Laubitz, M.J., Matsumura, T., and Kelly, P.J., "Transport Properties of the Ferromagnetic Metals. II. Nickel," Can. J. Phys., <u>54</u>(1), 92-102, 1976.
- 218. Pallister, P.R., "Resistivity of Nickel," Metallurgia, <u>71</u>(426), 165-8, 1965.
- 219. Powell, R.W., Tye, R.P., and Hickman, M.J., "The Thermal Conductivity of Nickel," Int. J. Heat Mass Transfer, 8(5), 679-87, 1965.
- 220. Ahmad, H.M. and Greig, D., "The Electrical Resistivity and Thermopower of Nickel-Copper Alloys," J. Phys., C4, <u>35</u>(5), 223-6, 1974.
- 221. Zumsteg, F.C. and Parks, R.D., "Electrical Resistivity of Nickel Near the Curie Point," Phys. Rev. Lett., <u>24</u>(10), 520-4, 1970.
- 222. Standley, K.J. and Reich, K.H., "Ferromagnetic Resonance in Nickel and in Some of Its Alloys," Proc. Phys. Soc., London, 68(10), 713-22, 1955.
- 223. Dutta-Roy, S.K. and Subrahmanyam, A.V., "Hall Effect, Magnetic Resistivity, and Magnetic Susceptibility of Nickel and Nickel-Copper Alloys," Phys. Rev., 177(3), 1133-8, 1969.
- 224. Jackson, P.J. and Saunders, N.H., "Electrical and Thermal Conductivity of NiCu Alloys in the Neighborhood of the Curie Point," Phys. Lett., 28A(1), 19-20, 1968.

- 225. Kirichenko, P.I. and Mikryukov, V.E., "Thermal and Electrical Properties of Some Alloys of the Rhenium-Nickel System," Teplofiz. Vys. Temp., <u>2</u>, 199-204, 1963; Engl. transl.: High Temp., <u>2</u>(2), 176-80, 1964.
- 226. Kaul, S.N., "Spin-Disorder Scattering in Concentrated Nickel Copper Alloys," Solid State Commun., <u>15</u>, 1179-84, 1974.
- 227. Bode, K.H., "A New Method to Measure the Heat Conductivity of Metals at High Temperatures," Allgem. Warmetech., 10(7), 125-42, 1961.
- 228. Davis, M., Densem, C.E., and Rendall, J.H., "The Manufacture and Properties of High-Strength Nickel-Tungsten Alloys," J. Inst. Metals, <u>84</u>, 160-4, 1956.
- 229. Berger, L. and Rivier, D., "Electrical and Thermal Resistivity of Pure Nickel and of an Iron Nickel Alloy in a Magnetic Field at a Low Temperature," Helv. Phys. Acta, <u>35</u>, 715-32, 1962.
- 230. Rowlands, J.A., "Band Shifting Resistivity in Ni-Mn Alloys," J. Phys. F: Metal Physics, 3, L149-53, 1973.
- 231. Svensson, B., "Ferromagnetic Resistivity Increase of Copper-Nickel Alloys," Ann. Physik, <u>25</u>, 263-71, 1936.
- 232. Lavine, J.M., "Extraordinary Hall-Effect Measurements on Nickel, Some Nickel Alloys and Ferrites," Phys. Rev., 123, 1273-7, 1961.
- 233. Kondorskii, E.I., Galkina, O.S., and Chernikova, L.A., "Low-Temperature Resistivity of Nickel Alloys and Its Variation in Magnetic Fields," Bull. Acad. Sci. USSR, Phys. Ser., 21, 1109-15, 1957.
- 234. Kurbanniyazov, N., Cheremushkina, A.V., and Akmuradov, B.A., "Hall Effect and Electrical Resistance of Ni, Co, and Ni-Co Alloys," Sov. Phys. J., 16(4), 539-41, 1973.
- 235. Sager, G.F., "Thermal Conductivity of the System: Copper-Nickel," Rensselaer Polytech. Inst. Eng. & Sci. Ser. No. 27, 48 pp., 1930.
- 236. Martynyuk, M.M. and Tsapkov, V.I., "The Applicability of Mott's Formula to the Fusion of Transition Metals," Russ. J. Phys. Chem., <u>47</u>(5), 741-2, 1973.
- 237. Kronmueller, H. and Buck, O., "Determination of Domain Structure of Nickel Single Crystal from Measurements of Resistivity Changes in Small Magnetic Field," Phys. Status Solidi, 6(1), 207-16, 1964.

- 238. Neimark, B.E. and Bykova, T.I., "Investigation of the Thermal Conductivity of Thin-Walled Nickel Tubes," J. Eng. Phys., 8(3), 250-2, 1965.
- 239. Jain, S.C., Goel, T.C., and Chandra, I., "Thermal and Electrical Conductivities and Spectral and Total Emissivities of Nickel at High Temperatures," Phys. Lett., <u>24A</u>(6), 320-1, 1967.
- 240. Watson, T.W. and Robinson, H.E., "Thermal Conductivity of a Specimen of Electroformed Nickel," Natl. Bur. Stand. Rept. NBS-8345, 12 pp., 1964.
- 241. Reddy, B.K. and Goel, T.C., "Total & Spectral Emittances & Electrical Resistivity of Nickel at High Temperatures," Indian J. Pure Appl. Phys., <u>13</u>(2), 138, 1975.
- 242. Birss, R.R. and Dey, S.K., "The Temperature Dependence of the Resistivity of Ferromagnetic Metals," Proc. R. Soc. London, <u>A263</u>, 473-81, 1961.
- 243. Franklin Institute, Laboratories for Research and Development, "Research in Thermoelectricity," Quarterly Progress Rept. No. P-2292-8, 1954. [AD 33 452]
- 244. Coltman, R.R., Klabunde, C.E., and Redman, J.K., "Survey of Thermal-Neutron Damage in Pure Metals," Phys. Rev., 156(3), 715-34, 1967.
- 245. Sharma, J.K.N., "Heat Conductivities Below 1 K," Cryogenics, <u>7</u>(3), 147-56, 1967.
- 246. Masumoto, H., "On the Magnetic, Electric, and Thermal Properties of Ni-Co Alloys," Sci. Rep. Tohoku Imp. Univ., <u>16</u>, 321-32, 1927.
- 247. Rubanenko, I.R. and Grossman, M.I., "Thermal Conductivity of Brushes for Electrical Machines," Elektrotekhnika, <u>40</u>(5), 38-9, 1969.
- 248. Mitchell, M.A., Klemens, P.G., and Reynolds, C.A., "Lattice Thermal Conductivity of Plastically Deformed Copper Plus 10 Atomic Percent Aluminum Specimens in the Temperature Range 1-4°K," Phys. Rev. B, 3, 3(4), 1119-30, 1971.
- 249. Starr, C.D., "State of the Art of Electrical Resistance Conductors -Part 1," Insulation, <u>15</u>(3), 36-40, 1969.
- 250. Arajs, S., "Electrical Resistivities of Nickel-Niobium Solid Solutions," J. Appl. Phys., <u>32</u>(1), 97-9, 1961.

- 251. Wong, H.Y., "Oxidized Nickel as a Heating Element in Vacuum," Br. J. Appl. Phys., 17(10), 1329-37, 1966.
- 252. Schindler, A.I., Smith, R.J., and Salkovitz, E.I., "Preliminary Electrical-Resistivity Measurements of the Nickel-Palladium Alloy System," Phys. Chem. Solids, 1(1/2), 39-41, 1956.
- 253. Dewar, J. and Fleming, J.A., "On the Electrical Resistance of Pure Metals, Alloys and Non-Metals at the Boiling Point of Oxygen," Philos. Mag., <u>34</u>, 326-37, 1892.
- 254. Kalinovich, D.F., Kovenskii, I.I., Smolin, M.D., and Statsenko, V.M., "Temperature Dependence of Thermoelectromotive Force and Electrical Resistivity of Pure Nickel," Dopov. Akad. Nauk Ukr. RSR, <u>A34</u>(4), 351-3, 1972.
- 255. Borodovskaia, L.N. and Lebedev, S.V., "Dependence of the Electrical Conductivity and Electron Emission on the Energy of a Metal in the Process of Its Heating by a Current of High Density," Sov. Phys.-JETP, <u>1</u>, 71-83, 1955.
- 256. Köster, W. and Gmöhling, W., "Conductivity and Hall Coefficient. Pt. 15. Solid Solutions of Nickel With Its Neighboring Elements in the Periodic System," Z. Metallkd., 52(11), 713-20, 1961.
- 257. Vedernikov, M.V. and Kolomoets, N.Y., "Thermoelectric Properties of Solid Solutions of Chromium, Vanadium, and Titanium in Nickel," Sov. Phys.-Solid State, 2, 2420-7, 1961.
- 258. Panakov, T.M., Peninov, R.I., Muradov, T.I., and Ibragimov, A.I., "Resistivity and Heat Conductivity of Nickel and Nickel-Niobium Alloys at 50-800 C," Fiz. Met. Metalloved., <u>38(4)</u>, 888-90, 1974.
- 259. Tyagunov, G.V., Baum, B.A., and Kushniv, M.N., "Viscosity and Electrical Resistivity of Chrome-Nickel Alloys," Izv. Vyssh. Uchebn. Zaved., Fiz., <u>5</u>, 149-51, 1973.
- 260. Busch, G., Güntherodt, H.J., Künzi, H.U., Meier, H.A., and Schlapbach, L., "Electronic Structure of Liquid Transition and Rare-Earth Metals," Mater. Res. Bull., 5(8), 567-76, 1970.
- 261. Schwerer, F.C. and Silcox, J., "Electrical Resistivity of Nickel at Low Temperatures," Phys. Rev. Lett., <u>20</u>(3), 101-3, 1968.

- 262. Yao, Y.D., Arajs, S., and Anderson, E.E., "Electrical Resistivity of Nickel-Rich Nickel Chromium Alloys Between 4 and 300 K," J. Low Temp. Phys., 21(3/4), 369-76, 1975.
- 263. Sherif, I.I., Ibrahim, A.F., Ghani Awad, A.A., Ammar, A.S., and Esmail, S.A., "Measurement of Thermal Conductivity and Lorenz Number of Metals and Alloys at High Temperatures," Indian J. Phys., 50(3), 427-37, 1976.
- 264. Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Klemens, P.G., <u>Thermal</u> <u>Conductivity - Metallic Elements and Alloys</u>, Vol. 1 of <u>Thermophysical</u> <u>Properties of Matter - The TPRC Data Series</u>, IFI/Plenum Data Corp., New York, 1595 pp., 1970.
- 265. Laws, F.A., <u>Electrical Measurements</u>, 2nd Edition, McGraw-Hill Book Co., Inc., New York, 739 pp., 1938.
- 266. Harris, F.K., <u>Electrical Measurements</u>, John Wiley and Sons, Inc., New York, 784 pp., 1952.
- Meaden, G.T., <u>Electrical Resistance of Metals</u>, Plenum Press, New York, 218 pp., 1965.
- 268. Van der Pauw, L.J., "A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shape," Philips Res. Rep., 13, 1-9, 1958.
- 269. Van der Pauw, L.J., "A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape," Philips Tech. Rev., <u>20</u>(8), 220-4, 1958-9.
- 270. MacDonald, D.K.C., "Electrical Conductivity of Metals and Alloys at Low Temperatures," in <u>Handbuch der Physik</u>, Vol. 14, Springer-Verlag, Berlin, 137-97, 1956.
- 271. Chambers, R.G. and Park, J.G., "Measurement of Electrical Resistivity by a Mutual Inductance Method," Br. J. Appl. Phys., <u>12</u>, 507-10, 1961.
- 272. Zimmerman, J.E., "Measurement of Electrical Resistivity of Bulk Metals," Rev. Sci. Instrum., 32(4), 402-5, 1961.
- 273. Radenac, A., Lacoste, M., and Roux, C., "Apparatus Meant for the Measurement of the Electrical Resistivity of Metals and Alloys by the Method of the Rotating Field Up to About 2000 K," Rev. Int. Hautes Temp. Refract., <u>7</u>(4), 389-96, 1970.
274. Bean, C.P., DeBlois, R.W., and Nesbitt, L.B., "Eddy-Current Methods for Measuring the Resistivity of Metals," J. Appl. Phys., <u>30</u>, 1976-80, 1959.

腰の言い